forked from keon/algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_polynomial.py
175 lines (142 loc) · 4.58 KB
/
test_polynomial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from algorithms.maths.polynomial import (
Polynomial,
Monomial
)
from fractions import Fraction
import math
import unittest
class TestSuite(unittest.TestCase):
def setUp(self):
self.p0 = Polynomial([
Monomial({})
])
self.p1 = Polynomial([
Monomial({}), Monomial({})
])
self.p2 = Polynomial([
Monomial({1: 1}, 2)
])
self.p3 = Polynomial([
Monomial({1: 1}, 2),
Monomial({1: 2, 2: -1}, 1.5)
])
self.p4 = Polynomial([
Monomial({2: 1, 3: 0}, Fraction(2, 3)),
Monomial({1: -1, 3: 2}, math.pi),
Monomial({1: -1, 3: 2}, 1)
])
self.p5 = Polynomial([
Monomial({150: 5, 170: 2, 10000:3}, 0),
Monomial({1: -1, 3: 2}, 1),
])
self.p6 = Polynomial([
2,
-3,
Fraction(1, 7),
2**math.pi,
Monomial({2: 3, 3: 1}, 1.25)
])
self.p7 = Polynomial([
Monomial({1: 1}, -2),
Monomial({1: 2, 2: -1}, -1.5)
])
self.m1 = Monomial({1: 2, 2: 3}, -1)
return
def test_polynomial_addition(self):
# The zero polynomials should add up to
# itselves only.
self.assertEqual(self.p0 + self.p1, self.p0)
self.assertEqual(self.p0 + self.p1, self.p1)
# Additive inverses should add up to the
# zero polynomial.
self.assertEqual(self.p3 + self.p7, self.p0)
self.assertEqual(self.p3 + self.p7, self.p1)
# Like terms should combine.
# The order of monomials should not matter.
self.assertEqual(self.p2 + self.p3, Polynomial([
Monomial({1: 1}, 4),
Monomial({1: 2, 2: -1}, 1.5)
]))
self.assertEqual(self.p2 + self.p3, Polynomial([
Monomial({1: 2, 2: -1}, 1.5),
Monomial({1: 1}, 4),
]))
# Another typical computation.
self.assertEqual(self.p5 + self.p6, Polynomial([
Monomial({}, 7.96783496993343),
Monomial({2: 3, 3: 1}, 1.25),
Monomial({1: -1, 3: 2})
]))
return
def test_polynomial_subtraction(self):
self.assertEqual(self.p3 - self.p2, Polynomial([
Monomial({1: 2, 2: -1}, 1.5)
]))
self.assertEqual(self.p3 - self.p3, Polynomial([]))
self.assertEqual(self.p2 - self.p3, Polynomial([
Monomial({1: 2, 2: -1}, -1.5)
]))
pass
def test_polynomial_multiplication(self):
self.assertEqual(self.p0 * self.p2, Polynomial([]))
self.assertEqual(self.p1 * self.p2, Polynomial([]))
self.assertEqual(self.p2 * self.p3, Polynomial([
Monomial({1: 2}, 4),
Monomial({1: 3, 2: -1}, Fraction(3, 1))
]))
return
def test_polynomial_division(self):
# Should raise a ValueError if the divisor is not a monomial
# or a polynomial with only one term.
self.assertRaises(ValueError, lambda x, y: x / y, self.p5, self.p3)
self.assertRaises(ValueError, lambda x, y: x / y, self.p6, self.p4)
self.assertEqual(self.p3 / self.p2, Polynomial([
Monomial({}, 1),
Monomial({1: 1, 2: -1}, 0.75)
]))
self.assertEqual(self.p7 / self.m1, Polynomial([
Monomial({1: -1, 2: -3}, 2),
Monomial({1: 0, 2: -4}, 1.5)
]))
self.assertEqual(self.p7 / self.m1, Polynomial([
Monomial({1: -1, 2: -3}, 2),
Monomial({2: -4}, 1.5)
]))
return
def test_polynomial_variables(self):
# The zero polynomial has no variables.
self.assertEqual(self.p0.variables(), set())
self.assertEqual(self.p1.variables(), set())
# The total variables are the union of the variables
# from the monomials.
self.assertEqual(self.p4.variables(), {1, 2, 3})
# The monomials with coefficient 0 should be dropped.
self.assertEqual(self.p5.variables(), {1, 3})
return
def test_polynomial_subs(self):
# Anything substitued in the zero polynomial
# should evaluate to 0.
self.assertEqual(self.p1.subs(2), 0)
self.assertEqual(self.p0.subs(-101231), 0)
# Should raise a ValueError if not enough variables are supplied.
self.assertRaises(ValueError, lambda x, y: x.subs(y), self.p4, {1: 3, 2: 2})
self.assertRaises(ValueError, lambda x, y: x.subs(y), self.p4, {})
# Should work fine if a complete subsitution map is provided.
self.assertAlmostEqual(self.p4.subs({1: 1, 2: 1, 3: 1}), (1 + math.pi + Fraction(2, 3)), delta=1e-9)
# Should work fine if more than enough substitutions are provided.
self.assertAlmostEqual(self.p4.subs({1: 1, 2: 1, 3: 1, 4: 1}), (1 + math.pi + Fraction(2, 3)), delta=1e-9)
return
def test_polynomial_clone(self):
# The zero polynomial always clones to itself.
self.assertEqual(self.p0.clone(), self.p0)
self.assertEqual(self.p1.clone(), self.p0)
self.assertEqual(self.p0.clone(), self.p1)
self.assertEqual(self.p1.clone(), self.p1)
# The polynomial should clone nicely.
self.assertEqual(self.p4.clone(), self.p4)
# The monomial with a zero coefficient should be dropped
# in the clone.
self.assertEqual(self.p5.clone(), Polynomial([
Monomial({1: -1, 3: 2}, 1)
]))
return