forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_cityscapes.py
77 lines (65 loc) · 2.15 KB
/
convert_cityscapes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
File: convert_cityscapes.py
This file is based on https://github.com/mcordts/cityscapesScripts to generate **labelTrainIds.png for training.
Before running, you should download the cityscapes form https://www.cityscapes-dataset.com/ and make the folder
structure as follow:
cityscapes
|
|--leftImg8bit
| |--train
| |--val
| |--test
|
|--gtFine
| |--train
| |--val
| |--test
"""
import os
import argparse
from multiprocessing import Pool, cpu_count
import glob
from cityscapesscripts.preparation.json2labelImg import json2labelImg
def parse_args():
parser = argparse.ArgumentParser(
description='Generate **labelTrainIds.png for training')
parser.add_argument(
'--cityscapes_path',
dest='cityscapes_path',
help='cityscapes path',
type=str)
parser.add_argument(
'--num_workers',
dest='num_workers',
help='How many processes are used for data conversion',
type=int,
default=cpu_count())
return parser.parse_args()
def gen_labelTrainIds(json_file):
label_file = json_file.replace("_polygons.json", "_labelTrainIds.png")
json2labelImg(json_file, label_file, "trainIds")
def main():
args = parse_args()
fine_path = os.path.join(args.cityscapes_path, 'gtFine')
json_files = glob.glob(os.path.join(fine_path, '*', '*', '*_polygons.json'))
print('generating **_labelTrainIds.png')
p = Pool(args.num_workers)
for f in json_files:
p.apply_async(gen_labelTrainIds, args=(f, ))
p.close()
p.join()
if __name__ == '__main__':
main()