-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinfer_ours.py
423 lines (376 loc) · 16.3 KB
/
infer_ours.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import os
from numpy import mean
import torch
import argparse
from tqdm import tqdm
import cv2
import pandas as pd
from collections import defaultdict
import time
from thop import profile
from numpy import inf
import copy
# local modules
from myutils.utils import *
from models.Ours.model_singleframe import EVFIAutoEx
from dataloader.h5dataset import *
from dataloader.h5dataloader import *
from loss import *
from dataloader.encodings import *
from myutils.vis_events.matplotlib_plot_events import *
def init_seeds(seed=0, cuda_deterministic=True):
print(f'seed:{seed}')
os.environ['PYTHONHASHSEED'] = str(seed)
os.environ["PL_GLOBAL_SEED"] = str(seed)
torch.backends.cudnn.enabled = True
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# torch.cuda.manual_seed_all(seed)
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
if cuda_deterministic: # slower, more reproducible
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else: # faster, less reproducible
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
def infer_body(dataloader_config, data_path, models, real_blur,
img_path, logger: Logger_yaml,
device, vis: event_visualisation, metrics):
lpips = metrics['lpips']
ssim = metrics['ssim']
psnr = metrics['psnr']
mse = metrics['mse']
l1 = metrics['l1']
model = models['model']
# build dataset
logger.log_dict(dataloader_config, 'eval_datasetloader_config')
if real_blur:
dataloader = InferenceHDF5DataLoaderRealData(data_path, dataloader_config)
else:
dataloader = InferenceHDF5DataLoader(data_path, dataloader_config)
DeblurPretrain = dataloader_config['dataset'].get('DeblurPretrain', False)
NumFramePerPeriod = dataloader_config['dataset']['NumFramePerPeriod']
NumPeriodPerLoad = dataloader_config['dataset']['NumPeriodPerLoad']
BlurryPath = os.path.join(img_path, 'blurry_frame')
EventPath = os.path.join(img_path, 'event')
GTPath = os.path.join(img_path, 'gt_frame')
os.makedirs(BlurryPath, exist_ok=False)
os.makedirs(EventPath, exist_ok=False)
os.makedirs(GTPath, exist_ok=False)
if model is not None:
RestoredPath = os.path.join(img_path, 'restored_frame')
os.makedirs(RestoredPath, exist_ok=False)
metric_step = {
'psnr': []
}
metric_track = MetricTracker([
'mse', 'psnr', 'ssim', 'lpips',
])
iL = -1
iF = -1
for index, inputs_seq in enumerate(tqdm(dataloader, total=len(dataloader))):
# if i > 1000:
# break
if not real_blur:
SeqLatentF = inputs_seq['SeqLatentF'].transpose(0, 1).to(device) # LxBxNumPxNumFx3xHxW
SeqBlurryF = inputs_seq['SeqBlurryF'].transpose(0, 1).to(device) # LxBxNumPx3xHxW
SeqHREv = inputs_seq['SeqHREv'].transpose(0, 1).to(device) # LxBxTBx2xHxW
RelativeLatentTs = inputs_seq['RelativeLatentTs'].transpose(0, 1).to(device) # LxBxNumPx(NumP*NumF)
SeqExposureDuty = inputs_seq['SeqExposureDuty'].transpose(0, 1).to(device) # LxBxNumPx1
if not real_blur:
L, B, NumP, NumF, C, H, W = SeqLatentF.size() # NumP = 1
else:
L, B, NumP, NumF = RelativeLatentTs.size()
for idxL in range(L):
iL += 1
if not real_blur:
LatentFMul = SeqLatentF[idxL].view(B, NumP*NumF, -1, H, W) # BxNumFx3xHxW
BlurryF = SeqBlurryF[idxL].squeeze(1) # Bx3xHxW
HREv = SeqHREv[idxL] # BxTBx2xHxW
TsMul = RelativeLatentTs[idxL].squeeze(1) # BxNumF
ExposureDuty = SeqExposureDuty[idxL].squeeze(1) # Bx1
NumI = TsMul.size(-1) # NumF
for i in range(NumI):
iF += 1
if not real_blur:
LatentF = LatentFMul[:, i] # Bx3xHxW
Ts = TsMul[:, [i]] # Bx1
pred_sharp = model(
Frame=BlurryF.contiguous(), # Bx3xHxW
Event=HREv.contiguous(), # BxTBx2xHxW
T=Ts.contiguous(), # Bx1
GTEx=ExposureDuty.contiguous(), # Bx1
)[-1]
if not real_blur:
psnr_value = psnr(pred_sharp, LatentF)
mse_value = mse(pred_sharp, LatentF)
ssim_value = ssim(pred_sharp, LatentF)
lpips_value = lpips(pred_sharp, LatentF)
metric_step['psnr'].append(psnr_value.item())
metric_track.update('mse', mse_value.item())
metric_track.update('psnr', psnr_value.item())
metric_track.update('ssim', ssim_value.item())
metric_track.update('lpips', lpips_value.item())
# images save
if not real_blur:
vis.plot_frame((LatentF[0].cpu().numpy().transpose(1, 2, 0) * 255).astype('uint8'), is_save=True,
path=os.path.join(GTPath, '{:09d}_{}.png'.format(iF, iL)))
vis.plot_frame((pred_sharp[0].clamp(0, 1).cpu().numpy().transpose(1, 2, 0) * 255).astype('uint8'), is_save=True,
path=os.path.join(RestoredPath, '{:09d}_{}.png'.format(iF, iL)))
vis.plot_frame((BlurryF[0].cpu().numpy().transpose(1, 2, 0) * 255).astype('uint8'), is_save=True,
path=os.path.join(BlurryPath, f'{iL:09d}.png'))
for idx in range(HREv.size(1)):
vis.plot_event_cnt(HREv[0, idx].cpu().numpy().transpose(1, 2, 0), is_save=True,
path=os.path.join(EventPath, '{}_TB{:09d}.png'.format(iL, idx)),
color_scheme="blue_red", is_black_background=False, is_norm=True)
result = metric_track.result()
result_step = metric_step
out = {
'result': result,
'result_step': result_step,
}
logger.log_dict(result, 'evaluation results')
logger.log_dict(result_step, 'evaluation step results')
return out
def load_model(model_path, device):
if model_path is not None:
assert os.path.isfile(model_path)
cpt = torch.load(model_path, map_location=device)
print(f'Load model from: {model_path}...')
# build model
config = cpt['config']
model = eval(config['model']['name'])(**config['model']['args'])
model.load_state_dict(cpt['model']['states'])
model.to(device)
model.eval()
print(model)
else:
model = None
return model
def process(data: list):
minL = inf
for item in data:
if minL > len(item):
minL = len(item)
print(f'min L: {minL}')
outList = []
for i in range(minL):
tempList = []
for item in data:
tempList.append(item[i])
outList.append(float(mean(tempList)))
return outList
def get_flags():
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default=None)
parser.add_argument('--data_list', type=str, default=None)
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--output_path', type=str, required=True)
parser.add_argument('--scale', type=int, default=None)
parser.add_argument('--ori_scale', type=str, default=None)
parser.add_argument('--time_bins', type=int, default=None)
parser.add_argument('--interp_num', type=int, default=None)
parser.add_argument('--num_frame_per_period', type=int, default=None)
parser.add_argument('--num_frame_per_blurry', type=int, default=None)
parser.add_argument('--num_period_per_seq', type=int, default=None)
parser.add_argument('--sliding_window_seq', type=int, default=None)
parser.add_argument('--num_period_per_load', type=int, default=None)
parser.add_argument('--sliding_window_load', type=int, default=None)
parser.add_argument('--exposure_method', type=str, default=None)
parser.add_argument('--exposure_time', type=str, default=None)
parser.add_argument('--deblur_pretrain', default=False, action='store_true')
parser.add_argument('--noise_std', type=float, default=None)
parser.add_argument('--noise_enabled', default=True, action='store_false') # false for real-world data
parser.add_argument('--center_crop_size', type=int, nargs='+', default=None)
parser.add_argument('--real_blur', default=False, action='store_true')
# parser.add_argument('--need_gt_frame', default=False, action='store_true')
return parser.parse_args()
@torch.no_grad()
def main():
SCALE = 4
ORI_SCALE = 'down4'
TIME_BINS = 1
NumFramePerPeriod = 16
NumFramePerBlurry = 9
NumPeriodPerSeq = 2
SlidingWindowSeq = 2
NumPeriodPerLoad = 2
SlidingWindowLoad = 2
ExposureMethod = 'Fixed'
ExposureTime = None
DeblurPretrain = False
dataloader_config = {
'batch_size': 1,
'shuffle': False,
'num_workers': 4,
'pin_memory': True,
'drop_last': False,
'dataset': {
'scale': SCALE,
'ori_scale': ORI_SCALE,
'time_bins': TIME_BINS,
'interp_num': 16,
'NumFramePerPeriod': NumFramePerPeriod,
'NumFramePerBlurry': NumFramePerBlurry,
'NumPeriodPerSeq': NumPeriodPerSeq,
'SlidingWindowSeq': SlidingWindowSeq,
'NumPeriodPerLoad': NumPeriodPerLoad,
'SlidingWindowLoad': SlidingWindowLoad,
'ExposureMethod': ExposureMethod,
'ExposureTime': ExposureTime,
'DeblurPretrain': DeblurPretrain,
'data_augment': {
'enabled': True,
'augment': ['RandomCrop', 'CenterCrop', "HorizontalFlip", "VertivcalFlip", 'Noise', 'HotPixel'],
'random_crop': {
'enabled': False,
'size': [128, 128],
},
'center_crop': {
'enabled': False,
'size': [128, 128],
},
'flip': {
'enabled': False,
'horizontal_prob': 0.5,
'vertical_prob': 0.5,
},
'noise': {
'enabled': True,
'noise_std': 1.0,
'noise_fraction': 0.05,
},
'hot_pixel': {
'enabled': True,
'hot_pixel_std': 2.0,
'hot_pixel_fraction': 0.001,
},
},
},
}
flags = get_flags()
model_path = flags.model_path
data_list = flags.data_list
device = torch.device(flags.device)
output_path = flags.output_path
os.makedirs(output_path, exist_ok=True)
scale = flags.scale
ori_scale = flags.ori_scale
time_bins = flags.time_bins
interp_num = flags.interp_num
num_frame_per_period = flags.num_frame_per_period
num_frame_per_blurry = flags.num_frame_per_blurry
num_period_per_seq = flags.num_period_per_seq
sliding_window_seq = flags.sliding_window_seq
num_period_per_load = flags.num_period_per_load
sliding_window_load = flags.sliding_window_load
exposure_method = flags.exposure_method
exposure_time = flags.exposure_time
deblur_pretrain = flags.deblur_pretrain
noise_std = flags.noise_std
noise_enabled = flags.noise_enabled
center_crop_size = flags.center_crop_size
real_blur = flags.real_blur
if scale is not None:
dataloader_config['dataset']['scale'] = scale
if ori_scale is not None:
dataloader_config['dataset']['ori_scale'] = ori_scale
if time_bins is not None:
dataloader_config['dataset']['time_bins'] = time_bins
if interp_num is not None:
dataloader_config['dataset']['interp_num'] = interp_num
if num_frame_per_period is not None:
dataloader_config['dataset']['NumFramePerPeriod'] = num_frame_per_period
if num_frame_per_blurry is not None:
dataloader_config['dataset']['NumFramePerBlurry'] = num_frame_per_blurry
if num_period_per_seq is not None:
dataloader_config['dataset']['NumPeriodPerSeq'] = num_period_per_seq
if sliding_window_seq is not None:
dataloader_config['dataset']['SlidingWindowSeq'] = sliding_window_seq
if num_period_per_load is not None:
dataloader_config['dataset']['NumPeriodPerLoad'] = num_period_per_load
if sliding_window_load is not None:
dataloader_config['dataset']['SlidingWindowLoad'] = sliding_window_load
if exposure_method is not None:
dataloader_config['dataset']['ExposureMethod'] = exposure_method
if exposure_time is not None:
dataloader_config['dataset']['ExposureTime'] = exposure_time
if deblur_pretrain is not None:
dataloader_config['dataset']['DeblurPretrain'] = deblur_pretrain
if noise_std is not None:
dataloader_config['dataset']['data_augment']['noise'].update({'enabled': True, 'noise_std': noise_std, 'noise_fraction': 0.05})
if noise_enabled is not None:
dataloader_config['dataset']['data_augment']['noise']['enabled'] = noise_enabled
dataloader_config['dataset']['data_augment']['hot_pixel']['enabled'] = noise_enabled
if center_crop_size is not None:
dataloader_config['dataset']['data_augment']['center_crop'].update({'enabled': True, 'size': center_crop_size})
print(dataloader_config)
vis = event_visualisation()
metrics = {
'lpips': perceptual_loss(net='alex'),
'ssim': ssim_loss(),
'psnr': psnr_loss(),
'mse': nn.MSELoss(),
'l1': nn.L1Loss(),
}
model = load_model(model_path, device)
models = {
'model': model,
}
model_paths = [
model_path,
]
data_list = pd.read_csv(data_list, header=None).values.flatten().tolist()
logger_all = Logger_yaml(os.path.join(output_path, 'inference_all.yml'))
logger_all.log_info(f'inference {model_paths} \n on {data_list}')
logger_all_step = Logger_yaml(os.path.join(output_path, 'inference_all_step.yml'))
logger_all_step.log_info(f'inference {model_paths} \n on {data_list}')
results = []
for data_path in tqdm(data_list):
print(f'processing {data_path}')
data_name = os.path.basename(data_path)
root_path = os.path.join(output_path, data_name)
img_path = os.path.join(root_path, 'img')
os.makedirs(root_path, exist_ok=False)
os.makedirs(img_path, exist_ok=False)
logger = Logger_yaml(os.path.join(root_path, 'inference.yml'))
logger.log_info(f'inference {model_paths} on {data_path}')
args = {
'dataloader_config': dataloader_config,
'data_path': data_path,
'models': models,
'img_path': img_path,
'logger': logger,
'device': device,
'vis': vis,
'metrics': metrics,
'real_blur':real_blur,
}
result = infer_body(**args)
result['data_name'] = data_name
results.append(result)
results_dict = defaultdict(dict)
results_mean = defaultdict(list)
results_dict_step = defaultdict(dict)
results_mean_step = defaultdict(list)
for entry in results:
data_name = entry.pop('data_name')
for k, v in entry['result'].items():
results_dict[k][data_name] = v
results_mean[k].append(v)
for k, v in entry['result_step'].items():
results_dict_step[k][data_name] = v
results_mean_step[k].append(v)
for k, v in results_mean.items():
results_mean[k] = float(mean(v))
for k, v in results_mean_step.items():
results_mean_step[k] = process(v)
logger_all.log_dict(dict(results_dict), 'breakdown results for each data')
logger_all.log_dict(dict(results_mean), 'mean results for the whole data')
logger_all_step.log_dict(dict(results_dict_step), 'breakdown results for each data')
logger_all_step.log_dict(dict(results_mean_step), 'mean results for the whole data (based on min length)')
if __name__ == '__main__':
init_seeds(seed=123)
main()