-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ours_cnt_seq.py
832 lines (717 loc) · 41.2 KB
/
train_ours_cnt_seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
import torch
import argparse
import random
import numpy as np
import torch.nn as nn
import torch.distributed as dist
from torch.optim import *
import torch.nn.functional as f
from torch.nn.parallel import DistributedDataParallel as ddp
import collections
from torch.optim.lr_scheduler import *
from numpy import inf
from einops import rearrange, reduce, repeat
# import MinkowskiEngine as ME
import matplotlib.pyplot as plt
# local modules
from config.parser import YAMLParser
from dataloader.h5dataloader import HDF5DataLoader, HDF5DataLoaderSequence
from loss import *
from models.model import *
from myutils.utils import *
from logger import *
from myutils.timers import Timer
from myutils.vis_events.visualization import *
from myutils.vis_events.matplotlib_plot_events import *
from dataloader.encodings import *
from extensions.chamfer_distance import ChamferDistance
def init_seeds(seed=0, cuda_deterministic=True):
print(f'seed:{seed}')
os.environ['PYTHONHASHSEED'] = str(seed)
os.environ["PL_GLOBAL_SEED"] = str(seed)
torch.backends.cudnn.enabled = True
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
if cuda_deterministic: # slower, more reproducible
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else: # faster, less reproducible
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def init_distributed_mode():
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ["RANK"])
world_size = int(os.environ['WORLD_SIZE'])
gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
rank = int(os.environ['SLURM_PROCID'])
gpu = rank % torch.cuda.device_count()
else:
raise Exception('Only support DDP')
torch.cuda.set_device(gpu)
dist_backend = 'nccl'
dist_url = 'env://'
print('| distributed init (rank {}): {}'.format(
rank, dist_url), flush=True)
dist.init_process_group(backend=dist_backend, init_method=dist_url,
world_size=world_size, rank=rank)
dist.barrier()
setup_for_distributed(rank == 0)
return gpu
class Trainer:
def __init__(self, args):
# config parser
self.config_parser = args['config_parser']
# dataloader
self.train_dataloader = args['train_dataloader']
self.valid_dataloader = args['valid_dataloader']
# models
self.esr_model = args['esr_model']
# loss fts
self.esr_loss = args['esr_loss']
# optimizers
self.esr_optimizer = args['esr_optimizer']
# lr scheduler
self.esr_lr_scheduler = args['esr_lr_scheduler']
# metadata
self.logger = args['logger']
self.device = args['device']
self.monitor = self.config_parser['trainer'].get('monitor', 'off')
self.checkpoint_dir = self.config_parser.save_dir
self.inp_sensor_resolution = self.train_dataloader.dataset.datasets[0].inp_sensor_resolution
self.gt_sensor_resolution = self.train_dataloader.dataset.datasets[0].gt_sensor_resolution
self.do_validation = self.valid_dataloader is not None
# training mode setting
is_epoch_based_train = self.config_parser['trainer']['epoch_based_train']['enabled']
is_iteration_based_train = self.config_parser['trainer']['iteration_based_train']['enabled']
if (is_epoch_based_train and is_iteration_based_train) or \
(not is_epoch_based_train and not is_iteration_based_train):
raise Exception('Please set correct training mode in the configuration file!')
elif is_epoch_based_train:
# metadata for epoch-based training
if dist.get_rank() == 0:
self.logger.info('Apply epoch-based training...')
self.training_mode = 'epoch_based_train'
self.epochs = self.config_parser['trainer']['epoch_based_train']['epochs']
self.start_epoch = 1
self.len_epoch = len(self.train_dataloader)
self.save_period = self.config_parser['trainer']['epoch_based_train']['save_period']
self.train_log_step = max(len(self.train_dataloader) \
// self.config_parser['trainer']['epoch_based_train']['train_log_step'], 1)
self.valid_log_step = max(len(self.valid_dataloader) \
// self.config_parser['trainer']['epoch_based_train']['valid_log_step'], 1)
self.valid_step = self.config_parser['trainer']['epoch_based_train']['valid_step']
elif is_iteration_based_train:
# metadata for epoch-based training
if dist.get_rank() == 0:
self.logger.info('Apply iteration-based training...')
self.training_mode = 'iteration_based_train'
self.iterations = int(self.config_parser['trainer']['iteration_based_train']['iterations'])
self.len_epoch = len(self.train_dataloader)
self.save_period = self.config_parser['trainer']['iteration_based_train']['save_period']
self.train_log_step = self.config_parser['trainer']['iteration_based_train']['train_log_step']
self.valid_log_step = self.config_parser['trainer']['iteration_based_train']['valid_log_step']
self.valid_step = self.config_parser['trainer']['iteration_based_train']['valid_step']
self.lr_change_rate = self.config_parser['trainer']['iteration_based_train']['lr_change_rate']
# visualization tool
self.vis = event_visualisation()
# configuration to monitor model performance and save best
if self.monitor == 'off':
self.mnt_mode = 'off'
self.mnt_best = 0
else:
self.mnt_mode, self.mnt_metric = self.monitor.split()
assert self.mnt_mode in ['min', 'max']
self.mnt_best = inf if self.mnt_mode == 'min' else -inf
self.early_stop = self.config_parser['trainer'].get('early_stop', inf)
# setup visualization writer instance
if dist.get_rank() == 0:
self.writer = TensorboardWriter(self.config_parser.log_dir, self.logger, self.config_parser['trainer']['tensorboard'])
else:
self.writer = None
# setup metric tracker
train_mt_keys = ['train_mse_loss', 'train_loss']
valid_mt_keys = ['valid_mse_loss', 'valid_loss']
self.train_metrics = MetricTracker(train_mt_keys, writer=self.writer)
self.valid_metrics = MetricTracker(valid_mt_keys, writer=self.writer)
# resume checkpoint
if self.config_parser.args.resume is not None:
self._resume_checkpoint()
def train(self):
"""
Full training logic
"""
if self.training_mode == 'epoch_based_train':
self.epoch_based_training()
elif self.training_mode == 'iteration_based_train':
self.iteration_based_training()
else:
raise Exception('Incorrect training config!')
def iteration_based_training(self):
"""
Iteration-based training logic
"""
valid_stamp = 1
epoch = 0
stop_training = False
complete_training = False
lamda = 0.01
self.mid_idx = (self.train_dataloader.seqn -1) // 2
self.not_improved_count = 0
self.esr_model.train()
self.train_metrics.reset()
while True:
if stop_training or complete_training:
break
self.train_dataloader.sampler.set_epoch(epoch)
for idx, inputs_seq in enumerate(self.train_dataloader):
iter_idx = idx + self.len_epoch * epoch
best = False
self.esr_optimizer.zero_grad()
loss = 0
if isinstance(self.esr_model, ddp):
self.esr_model.module.reset_states()
else:
self.esr_model.reset_states()
for inputs in inputs_seq:
# forward pass
inp_scaled_cnt = inputs['inp_scaled_cnt'] # BxNx2xkHxkW
gt_cnt = inputs['gt_cnt'][:, self.mid_idx].to(self.device) # Bx2xkHxkW
pred_cnt = self.esr_model(inp_scaled_cnt.to(self.device)) # Bx2xkHxkW
# loss and backward pass
if pred_cnt.size()[-2:] != gt_cnt.size()[-2:]:
pred_cnt = f.interpolate(pred_cnt, size=gt_cnt.size()[-2:], mode='bicubic', align_corners=False)
mse_loss = self.esr_loss['mse'](pred_cnt, gt_cnt)
# l1_loss = self.esr_loss['L1'](pred_cnt, gt_cnt)
# if iter_idx % 10 == 0 and iter_idx != 0:
# if lamda < 1:
# lamda += 0.01
loss += mse_loss
# lamda*l1_loss
loss.backward()
# torch.nn.utils.clip_grad_value_(self.esr_model.parameters(), 1)
self.esr_optimizer.step()
# reduce losses over all GPUs for logging purposes
reduced_mse_loss = reduce_tensor(mse_loss)
reduced_loss = reduce_tensor(loss)
# setup log info
if dist.get_rank() == 0:
log_step = iter_idx
learning_rate = self.esr_lr_scheduler.get_last_lr()[0]
self.writer.set_step(iter_idx)
self.train_metrics.update('train_mse_loss', reduced_mse_loss.item())
self.train_metrics.update('train_loss', reduced_loss.item())
self.writer.writer.add_scalar(f'learning rate', learning_rate, global_step=log_step)
if iter_idx % self.train_log_step == 0:
msg = 'Train Epoch: {} {} Iteration: {} {}'.format(epoch+1, self._progress(idx, self.train_dataloader, is_train=False), \
iter_idx, self._progress(iter_idx, self.train_dataloader, is_train=True))
msg += ' {}: {:.4e}'.format('train_mse_loss', reduced_mse_loss.item())
msg += ' {}: {:.4e}'.format('train_loss', reduced_loss.item())
msg += ' {}: {:.4e}'.format('learning rate', learning_rate)
self.logger.info(msg)
# visualize
if self.config_parser['trainer']['vis']['enabled']:
with torch.no_grad():
train_vis_step = self.config_parser['trainer']['vis']['train_img_writer_num']
if iter_idx % train_vis_step == 0:
# self.writer.writer.add_image('train_inp_events_cnt_white',
# self.vis.plot_event_cnt(inputs['inp_cnt'][0, self.mid_idx].numpy().transpose(1, 2, 0), is_save=False, is_black_background=False),
# global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('train_inp_events_cnt_black',
self.vis.plot_event_cnt(inputs['inp_cnt'][0, self.mid_idx].numpy().transpose(1, 2, 0), is_save=False, is_black_background=True),
global_step=log_step, dataformats='HWC')
# self.writer.writer.add_image('train_inp_scaled_events_cnt_white',
# self.vis.plot_event_cnt(inputs['inp_scaled_cnt'][0, self.mid_idx].numpy().transpose(1, 2, 0), is_save=False, is_black_background=False),
# global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('train_inp_scaled_events_cnt_black',
self.vis.plot_event_cnt(inputs['inp_scaled_cnt'][0, self.mid_idx].numpy().transpose(1, 2, 0), is_save=False, is_black_background=True),
global_step=log_step, dataformats='HWC')
# self.writer.writer.add_image('train_esr_events_cnt_white',
# self.vis.plot_event_cnt(pred_cnt[0].cpu().round().numpy().transpose(1, 2, 0), is_save=False, is_black_background=False),
# global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('train_esr_events_cnt_black',
self.vis.plot_event_cnt(pred_cnt[0].cpu().round().numpy().transpose(1, 2, 0), is_save=False, is_black_background=True),
global_step=log_step, dataformats='HWC')
# self.writer.writer.add_image('train_gt_events_cnt_white',
# self.vis.plot_event_cnt(inputs['gt_cnt'][0, self.mid_idx].numpy().transpose(1, 2, 0), is_save=False, is_black_background=False),
# global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('train_gt_events_cnt_black',
self.vis.plot_event_cnt(inputs['gt_cnt'][0, self.mid_idx].numpy().transpose(1, 2, 0), is_save=False, is_black_background=True),
global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('train_gt_frame',
(inputs['gt_img'][0, self.mid_idx].squeeze(0).numpy() * 255).astype('uint8'),
global_step=log_step, dataformats='HW')
plt.close('all')
# do validation
if self.do_validation:
if iter_idx % self.valid_step == 0 and iter_idx != 0:
with torch.no_grad():
val_log = self._valid(valid_stamp)
if dist.get_rank() == 0:
# plot stamp train & valid logs
for key, value in val_log.items():
self.writer.writer.add_scalar(f'stamp_{key}', value, global_step=valid_stamp)
self.writer.writer.add_scalar(f'stamp_train_mse_loss', reduced_mse_loss.item(), global_step=valid_stamp)
self.writer.writer.add_scalar(f'stamp_train_loss', reduced_loss.item(), global_step=valid_stamp)
log = {'Valid stamp': valid_stamp}
log.update(val_log)
for key, value in log.items():
self.logger.info(' {:25s}: {}'.format(str(key), value))
# evaluate model performance
stop_training, best = self.eval_model_performance(val_log)
if stop_training:
break
valid_stamp += 1
# save model
if dist.get_rank() == 0:
if (iter_idx % self.save_period == 0 and iter_idx != 0) or best:
self._save_checkpoint(iter_idx, save_best=best)
# change learning rate
if self.esr_lr_scheduler is not None:
if iter_idx % self.lr_change_rate == 0 and iter_idx != 0 \
and self.esr_lr_scheduler.get_last_lr()[0] >= 1e-4:
self.esr_lr_scheduler.step()
# Must clear cache at regular interval
# if iter_idx % 10 == 0:
# torch.cuda.empty_cache()
# logits for stopping training
if iter_idx + 1 == self.iterations:
if dist.get_rank() == 0:
self.logger.info('Training completes!')
complete_training = True
break
# sync all processes
dist.barrier()
epoch += 1
def epoch_based_training(self):
"""
Epoch-based training logic
"""
self.not_improved_count = 0
for epoch in range(self.start_epoch, self.epochs+1):
self.train_dataloader.sampler.set_epoch(epoch)
with Timer('Time of training one epoch', self.logger):
epoch_result = self._train_epoch(epoch)
# plot epoch average statics
if dist.get_rank() == 0:
for key, value in epoch_result.items():
self.writer.writer.add_scalar(f'epoch_{key}', value, global_step=epoch)
# save log informations into log dict
log = {'epoch': epoch}
log.update(epoch_result)
# print log informations to the screen
for key, value in log.items():
self.logger.info(' {:25s}: {}'.format(str(key), value))
# evaluate model performance
stop_training, best = self.eval_model_performance(epoch_result)
if stop_training:
break
# save model
if dist.get_rank() == 0:
if epoch % self.save_period == 0 or best:
self._save_checkpoint(epoch, save_best=best)
# sync all processes
dist.barrier()
# complete training
if dist.get_rank() == 0:
self.logger.info('Training completes!')
def eval_model_performance(self, log):
"""
Evaluate model performance according to configured metric
log: log includes validation metric
"""
if dist.get_rank() == 0:
if self.monitor == 'off':
self.logger.info('Please set the correct metric to evaluate model!')
else:
self.logger.info(f'Evaluate current model using metric "{self.mnt_metric}", and save the current best model...')
best = False
is_KeyError = False
stop_training = False
if self.mnt_mode != 'off':
try:
# check whether model performance improved or not, according to specified metric(mnt_metric)
improved = (self.mnt_mode == 'min' and log[self.mnt_metric] <= self.mnt_best) or \
(self.mnt_mode == 'max' and log[self.mnt_metric] >= self.mnt_best)
is_KeyError = False
except KeyError:
if dist.get_rank() == 0:
self.logger.warning("Warning: Metric '{}' is not found. "
"Ignore this stamp where using this metric to monitor.".format(self.mnt_metric))
is_KeyError = True
improved = False
if improved:
self.mnt_best = log[self.mnt_metric]
self.not_improved_count = 0
best = True
elif not is_KeyError:
self.not_improved_count += 1
if self.not_improved_count > self.early_stop:
if dist.get_rank() == 0:
self.logger.info("Validation performance didn\'t improve for {} stamps. "
"Training stops.".format(self.early_stop))
stop_training = True
return stop_training, best
def _train_epoch(self, epoch):
"""
Training logic for an epoch
:param epoch: Integer, current training epoch.
:return: A log that contains average loss and metric in this epoch.
"""
self.esr_model.train()
self.train_metrics.reset()
for batch_idx, inputs in enumerate(self.train_dataloader):
# if isinstance(self.esr_model, ddp):
# self.esr_model.module.reset_states()
# else:
# self.esr_model.reset_states()
self.esr_optimizer.zero_grad()
# lr forward pass
inp_sparse = ME.SparseTensor(features=inputs['inp_ori_list_sparse']['batch_feats'],
coordinates=inputs['inp_ori_list_sparse']['batch_coords'],
tensor_stride=self.config_parser['INPUT_TENSOR_STRIDE'],
device=self.device)
gt_sparse = ME.SparseTensor(features=inputs['gt_list_sparse']['batch_feats'],
coordinates=inputs['gt_list_sparse']['batch_coords'],
tensor_stride=1,
device=self.device)
pred_logits, gt_logits, gt_pol, pred_sparse = self.esr_model(inp_sparse, gt_sparse)
# loss and backward pass
num_layers = len(pred_logits)
bce_loss = 0
for pred_logit, gt_logit in zip(pred_logits, gt_logits):
curr_bce_loss = self.esr_loss['bce'](pred_logit.F.squeeze(), gt_logit.type(pred_logit.dtype))
bce_loss += curr_bce_loss
bce_loss = bce_loss / num_layers
mse_loss = self.esr_loss['mse'](pred_sparse.F.squeeze(), gt_pol)
loss = bce_loss + mse_loss
loss.backward()
self.esr_optimizer.step()
# reduce losses over all GPUs for logging purposes
reduced_bce_loss = reduce_tensor(bce_loss)
reduced_mse_loss = reduce_tensor(mse_loss)
reduced_loss = reduce_tensor(loss)
# setup log info
if dist.get_rank() == 0:
log_step = (epoch - 1) * self.len_epoch + batch_idx
learning_rate = self.esr_lr_scheduler.get_last_lr()[0]
self.writer.set_step(log_step)
self.train_metrics.update('train_bce_loss', reduced_bce_loss.item())
self.train_metrics.update('train_mse_loss', reduced_mse_loss.item())
self.train_metrics.update('train_loss', reduced_loss.item())
self.writer.writer.add_scalar(f'learning rate', learning_rate, global_step=log_step)
if batch_idx % self.train_log_step == 0:
msg = 'Train Epoch: {} {}'.format(epoch, self._progress(batch_idx, self.train_dataloader, is_train=True))
msg += ' {}: {:.4e}'.format('train_bce_loss', reduced_bce_loss.item())
msg += ' {}: {:.4e}'.format('train_mse_loss', reduced_mse_loss.item())
msg += ' {}: {:.4e}'.format('train_loss', reduced_loss.item())
msg += ' {}: {:.4e}'.format('learning rate', learning_rate)
self.logger.debug(msg)
# visualize
if self.config_parser['trainer']['vis']['enabled']:
with torch.no_grad():
train_vis_step = self.config_parser['trainer']['vis']['train_img_writer_num']
if batch_idx % train_vis_step == 0:
e_dict = sparse2event(pred_sparse, self.config_parser['TIME_BINS'], self.gt_sensor_resolution)
self.writer.writer.add_image('train_inp_events_cnt_white',
self.vis.plot_event_cnt(inputs['inp_cnt'][0].numpy().transpose(1, 2, 0), is_save=False, is_black_background=False),
global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('train_inp_events_cnt_black',
self.vis.plot_event_cnt(inputs['inp_cnt'][0].numpy().transpose(1, 2, 0), is_save=False, is_black_background=True),
global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('train_esr_events_cnt_white',
self.vis.plot_event_cnt(e_dict['e_cnt'][0].numpy().transpose(1, 2, 0), is_save=False, is_black_background=False),
global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('train_esr_events_cnt_black',
self.vis.plot_event_cnt(e_dict['e_cnt'][0].numpy().transpose(1, 2, 0), is_save=False, is_black_background=True),
global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('train_gt_events_cnt_white',
self.vis.plot_event_cnt(inputs['gt_cnt'][0].numpy().transpose(1, 2, 0), is_save=False, is_black_background=False),
global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('train_gt_events_cnt_black',
self.vis.plot_event_cnt(inputs['gt_cnt'][0].numpy().transpose(1, 2, 0), is_save=False, is_black_background=True),
global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('train_gt_frame',
(inputs['gt_img'][0].squeeze(0).numpy() * 255).astype('uint8'),
global_step=log_step, dataformats='HW')
plt.close('all')
# Must clear cache at regular interval
if batch_idx % 10 == 0:
torch.cuda.empty_cache()
# sync all processes
dist.barrier()
# only main process has non-zero train_log
train_log = self.train_metrics.result()
# do validation
if self.do_validation:
if epoch % self.valid_step == 0:
with torch.no_grad():
val_log = self._valid(epoch)
train_log.update(val_log)
# change learning rate
if self.esr_lr_scheduler is not None:
self.esr_lr_scheduler.step()
return train_log
def _valid(self, stamp):
"""
Validate after training an epoch or several iterations
:param stamp: the timestamp for validation,
epoch-based training -> epoch; iteration-based training -> valid_stamp
:return: A log that contains information about validation
"""
self.logger.debug('validation')
self.esr_model.eval()
self.valid_metrics.reset()
for batch_idx, inputs_seq in enumerate(self.valid_dataloader):
if isinstance(self.esr_model, ddp):
self.esr_model.module.reset_states()
else:
self.esr_model.reset_states()
# forward pass
loss = 0
for inputs in inputs_seq:
# forward pass
inp_scaled_cnt = inputs['inp_scaled_cnt'] # BxNx2xkHxkW
gt_cnt = inputs['gt_cnt'][:, self.mid_idx].to(self.device) # Bx2xkHxkW
pred_cnt = self.esr_model(inp_scaled_cnt.to(self.device)) # Bx2xkHxkW
# loss and backward pass
if pred_cnt.size()[-2:] != gt_cnt.size()[-2:]:
pred_cnt = f.interpolate(pred_cnt, size=gt_cnt.size()[-2:], mode='bicubic', align_corners=False)
mse_loss = self.esr_loss['mse'](pred_cnt, gt_cnt)
loss += mse_loss
# reduce losses over all GPUs for logging purposes
reduced_mse_loss = reduce_tensor(mse_loss)
reduced_loss = reduce_tensor(loss)
# setup log info
if dist.get_rank() == 0:
log_step = (stamp - 1) * len(self.valid_dataloader) + batch_idx
self.writer.set_step(log_step, 'valid')
if batch_idx % self.valid_log_step == 0:
msg = 'Valid timestamp: {} {}'.format(stamp, self._progress(batch_idx, self.valid_dataloader, is_train=False))
msg += ' {}: {:.4e}'.format('valid_mse_loss', reduced_mse_loss.item())
msg += ' {}: {:.4e}'.format('valid_loss', reduced_loss.item())
self.logger.debug(msg)
self.valid_metrics.update('valid_mse_loss', reduced_mse_loss.item())
self.valid_metrics.update('valid_loss', reduced_loss.item())
# Must clear cache at regular interval
# if batch_idx % 10 == 0:
# torch.cuda.empty_cache()
# visualize
if dist.get_rank() == 0 and self.config_parser['trainer']['vis']['enabled']:
with torch.no_grad():
valid_vis_step = self.config_parser['trainer']['vis']['valid_img_writer_num']
if batch_idx % valid_vis_step == 0:
# self.writer.writer.add_image('valid_inp_events_cnt_white',
# self.vis.plot_event_cnt(inputs['inp_cnt'][0, self.mid_idx].numpy().transpose(1, 2, 0), is_save=False, is_black_background=False),
# global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('valid_inp_events_cnt_black',
self.vis.plot_event_cnt(inputs['inp_cnt'][0, self.mid_idx].numpy().transpose(1, 2, 0), is_save=False, is_black_background=True),
global_step=log_step, dataformats='HWC')
# self.writer.writer.add_image('valid_inp_scaled_events_cnt_white',
# self.vis.plot_event_cnt(inputs['inp_scaled_cnt'][0, self.mid_idx].numpy().transpose(1, 2, 0), is_save=False, is_black_background=False),
# global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('valid_inp_scaled_events_cnt_black',
self.vis.plot_event_cnt(inputs['inp_scaled_cnt'][0, self.mid_idx].numpy().transpose(1, 2, 0), is_save=False, is_black_background=True),
global_step=log_step, dataformats='HWC')
# self.writer.writer.add_image('valid_esr_events_cnt_white',
# self.vis.plot_event_cnt(pred_cnt[0].cpu().round().numpy().transpose(1, 2, 0), is_save=False, is_black_background=False),
# global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('valid_esr_events_cnt_black',
self.vis.plot_event_cnt(pred_cnt[0].cpu().round().numpy().transpose(1, 2, 0), is_save=False, is_black_background=True),
global_step=log_step, dataformats='HWC')
# self.writer.writer.add_image('valid_gt_events_cnt_white',
# self.vis.plot_event_cnt(inputs['gt_cnt'][0, self.mid_idx].numpy().transpose(1, 2, 0), is_save=False, is_black_background=False),
# global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('valid_gt_events_cnt_black',
self.vis.plot_event_cnt(inputs['gt_cnt'][0, self.mid_idx].numpy().transpose(1, 2, 0), is_save=False, is_black_background=True),
global_step=log_step, dataformats='HWC')
self.writer.writer.add_image('valid_gt_frame',
(inputs['gt_img'][0, self.mid_idx].squeeze(0).numpy() * 255).astype('uint8'),
global_step=log_step, dataformats='HW')
plt.close('all')
return self.valid_metrics.result()
def _save_checkpoint(self, idx, save_best=False):
"""
Saving checkpoints
:param idx: epoch-based training -> epoch; iteration-based training -> iteration
:param save_best: if True, rename the saved checkpoint to 'model_best.pth'
"""
state = {
# model and optimizer states:
'model': {
'name': self.config_parser['model']['name'],
'states': self.esr_model.module.state_dict()
},
'lr_scheduler': {
'name': self.config_parser['lr_scheduler']['name'],
'states': self.esr_lr_scheduler.state_dict()
},
'optimizer': {
'name': self.config_parser['optimizer']['name'],
'states': self.esr_optimizer.state_dict()
},
# config
'config': self.config_parser.config
}
if self.training_mode == 'epoch_based_train':
state['trainer'] = {
'training_mode': self.training_mode,
'epoch': idx,
'monitor_best': self.mnt_best,
}
filename = str(self.checkpoint_dir / 'checkpoint-epoch{}.pth'.format(idx))
torch.save(state, filename)
self.logger.info("Saving checkpoint: {} ...".format(filename))
if save_best:
best_path = str(self.checkpoint_dir / f'model_best_until_epoch{idx}.pth')
torch.save(state, best_path)
self.logger.info(f"Saving current best: model_best_until_epoch{idx}.pth ...")
elif self.training_mode == 'iteration_based_train':
state['trainer'] = {
'training_mode': self.training_mode,
'iteration': idx,
'monitor_best': self.mnt_best,
}
filename = str(self.checkpoint_dir / 'checkpoint-iteration{}.pth'.format(idx))
torch.save(state, filename)
self.logger.info("Saving checkpoint: {} ...".format(filename))
if save_best:
best_path = str(self.checkpoint_dir / f'model_best_until_iteration{idx}.pth')
torch.save(state, best_path)
self.logger.info(f"Saving current best: model_best_until_iteration{idx}.pth ...")
def _resume_checkpoint(self):
"""
Resume from saved checkpoints
:param resume_path: Checkpoint path to be resumed
"""
resumer = Resumer(self.config_parser.args.resume, self.logger, self.config_parser.config)
trainer_states = resumer.resume_trainer('trainer')
is_same_training_mode = trainer_states['training_mode'] == self.training_mode
if not self.config_parser.args.reset and is_same_training_mode:
if self.training_mode == 'epoch_based_train':
self.start_epoch = trainer_states['epoch'] + 1
self.mnt_best = trainer_states['monitor_best']
if dist.get_rank() == 0:
self.logger.info("Checkpoint loaded. Resume training from epoch {}, \
and use the previous best monitor metric".format(self.start_epoch))
elif self.training_mode == 'iteration_based_train':
start_iteration = trainer_states['iteration'] + 1
self.mnt_best = trainer_states['monitor_best']
if dist.get_rank() == 0:
self.logger.info("Checkpoint loaded. Resume training from iteration {}, \
and use the previous best monitor metric".format(start_iteration))
else:
if self.training_mode == 'epoch_based_train':
if dist.get_rank() == 0:
self.logger.info("Checkpoint loaded. Resume training from epoch 1, \
and reset the previous best monitor metric")
elif self.training_mode == 'iteration_based_train':
if dist.get_rank() == 0:
self.logger.info("Checkpoint loaded. Resume training from iteration 1, \
and reset the previous best monitor metric")
resumer.resume_model(self.esr_model, 'model')
resumer.resume_optimizer(self.esr_optimizer, 'optimizer')
resumer.resume_lr_scheduler(self.esr_lr_scheduler, 'lr_scheduler')
def _progress(self, idx, data_loader, is_train):
base = '[{}/{} ({:.0f}%)]'
current = idx
if is_train:
if self.training_mode == 'epoch_based_train':
total = len(data_loader)
elif self.training_mode == 'iteration_based_train':
total = self.iterations
else:
total = len(data_loader)
return base.format(current, total, 100.0 * current / total)
def main(config_parser):
# init ddp
local_rank = init_distributed_mode()
# fix seed for each process
seed = config_parser.args.seed
rank = dist.get_rank()
init_seeds(seed + rank)
logger = config_parser.get_logger('train')
config = config_parser.config
device = torch.device(f'cuda:{local_rank}')
time_bins = config['TIME_BINS']
# setup data_loader instances
train_dataloader = HDF5DataLoaderSequence(config['train_dataloader'])
valid_dataloader = HDF5DataLoaderSequence(config['valid_dataloader'])
# build model architecture, then print to console
# ESR model
esr_model_withoutddp = eval(config['model']['name'])(**config['model']['args']).to(local_rank)
esr_model_withoutddp = torch.nn.SyncBatchNorm.convert_sync_batchnorm(esr_model_withoutddp).to(local_rank)
# esr_model_withoutddp = ME.MinkowskiSyncBatchNorm.convert_sync_batchnorm(esr_model_withoutddp).to(local_rank)
if dist.get_rank() == 0:
logger.info(esr_model_withoutddp)
esr_model = ddp(esr_model_withoutddp, device_ids=[local_rank], output_device=local_rank)
# loss functions
esr_loss = {
'mse': nn.MSELoss(),
'CD': ChamferDistance(),
'L1': nn.L1Loss(),
'lpips': perceptual_loss(gpu_ids=[local_rank]),
}
# optimizers
esr_trainable_params = filter(lambda p: p.requires_grad, esr_model.parameters())
esr_optimizer = eval(config['optimizer']['name'])(esr_trainable_params, **config['optimizer']['args'])
# learning rate scheduler
esr_lr_scheduler = eval(config['lr_scheduler']['name'])(esr_optimizer, **config['lr_scheduler']['args'])
# sync all processes
dist.barrier()
# training loop
args = {
# config parser
'config_parser': config_parser,
# dataloader
'train_dataloader': train_dataloader,
'valid_dataloader': valid_dataloader,
# models
'esr_model': esr_model,
# loss fts
'esr_loss': esr_loss,
# optimizers
'esr_optimizer': esr_optimizer,
# lr scheduler
'esr_lr_scheduler': esr_lr_scheduler,
# metadata
'logger': logger,
'device': device,
}
trainer = Trainer(args)
trainer.train()
if __name__ == '__main__':
args = argparse.ArgumentParser(description='test YAMLParser')
args.add_argument('-c', '--config', default=None, type=str)
args.add_argument('-id', '--runid', default=None, type=str)
args.add_argument('-seed', '--seed', default=123, type=int)
args.add_argument('-r', '--resume', default=None, type=str)
args.add_argument('--reset', default=False, action='store_true', help='if resume checkpoint, reset trainer states in the checkpoint')
args.add_argument('--limited_memory', default=False, action='store_true',
help='prevent "too many open files" error by setting pytorch multiprocessing to "file_system".')
if args.parse_args().limited_memory:
# https://github.com/pytorch/pytorch/issues/11201#issuecomment-421146936
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['-lr', '--learning_rate'], type=float, target='test;item1;body1'),
CustomArgs(['-bs', '--batch_size'], type=int, target='data_loader;args;batch_size')
]
config_parser = YAMLParser.from_args(args, options)
main(config_parser)