Fairseq provides several command-line tools for training and evaluating models:
- :ref:`fairseq-preprocess`: Data pre-processing: build vocabularies and binarize training data
- :ref:`fairseq-train`: Train a new model on one or multiple GPUs
- :ref:`fairseq-generate`: Translate pre-processed data with a trained model
- :ref:`fairseq-interactive`: Translate raw text with a trained model
- :ref:`fairseq-score`: BLEU scoring of generated translations against reference translations
- :ref:`fairseq-eval-lm`: Language model evaluation
.. automodule:: fairseq_cli.preprocess .. argparse:: :module: fairseq.options :func: get_preprocessing_parser :prog: fairseq-preprocess
.. automodule:: fairseq_cli.train .. argparse:: :module: fairseq.options :func: get_training_parser :prog: fairseq-train
.. automodule:: fairseq_cli.generate .. argparse:: :module: fairseq.options :func: get_generation_parser :prog: fairseq-generate
.. automodule:: fairseq_cli.interactive .. argparse:: :module: fairseq.options :func: get_interactive_generation_parser :prog: fairseq-interactive
.. automodule:: fairseq_cli.score .. argparse:: :module: fairseq_cli.score :func: get_parser :prog: fairseq-score
.. automodule:: fairseq_cli.eval_lm .. argparse:: :module: fairseq.options :func: get_eval_lm_parser :prog: fairseq-eval-lm