-
Notifications
You must be signed in to change notification settings - Fork 487
/
Copy pathjina_serving.py
273 lines (237 loc) · 10 KB
/
jina_serving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import datetime
import os
from typing import List
import nltk
import qdrant_client
import sentence_transformers
import torch
from duckduckgo_search import ddg
from duckduckgo_search.utils import SESSION
from langchain.chains import RetrievalQA
from langchain.document_loaders import UnstructuredFileLoader
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.vectorstores import Qdrant
from lcserve import serving
from chatllm import ChatLLM
from chinese_text_splitter import ChineseTextSplitter
from config import *
nltk.data.path = [os.path.join(os.path.dirname(__file__), "nltk_data")
] + nltk.data.path
embedding_model_dict = embedding_model_dict
llm_model_dict = llm_model_dict
EMBEDDING_DEVICE = EMBEDDING_DEVICE
LLM_DEVICE = LLM_DEVICE
VECTOR_STORE_PATH = VECTOR_STORE_PATH
COLLECTION_NAME = COLLECTION_NAME
num_gpus = num_gpus
init_llm = init_llm
init_embedding_model = init_embedding_model
def search_web(query):
SESSION.proxies = {
"http": f"socks5h://localhost:7890",
"https": f"socks5h://localhost:7890"
}
results = ddg(query)
web_content = ''
if results:
for result in results:
web_content += result['body']
return web_content
class KnowledgeBasedChatLLM:
llm: object = None
embeddings: object = None
def init_model_config(
self,
large_language_model: str = init_llm,
embedding_model: str = init_embedding_model,
):
self.llm = ChatLLM()
if 'chatglm' in large_language_model.lower():
self.llm.model_type = 'chatglm'
self.llm.model_name_or_path = llm_model_dict['chatglm'][
large_language_model]
elif 'belle' in large_language_model.lower():
self.llm.model_type = 'belle'
self.llm.model_name_or_path = llm_model_dict['belle'][
large_language_model]
elif 'vicuna' in large_language_model.lower():
self.llm.model_type = 'vicuna'
self.llm.model_name_or_path = llm_model_dict['vicuna'][
large_language_model]
self.embeddings = HuggingFaceEmbeddings(
model_name=embedding_model_dict[embedding_model], )
self.embeddings.client = sentence_transformers.SentenceTransformer(
self.embeddings.model_name, device=EMBEDDING_DEVICE)
self.llm.load_llm(llm_device=LLM_DEVICE, num_gpus=num_gpus)
def init_knowledge_vector_store(self,
filepath: str or List[str],):
loaded_files = []
if isinstance(filepath, str):
if not os.path.exists(filepath):
return "路径不存在"
elif os.path.isfile(filepath):
file = os.path.split(filepath)[-1]
try:
docs = self.load_file(filepath)
print(f"{file} 已成功加载")
loaded_files.append(filepath)
except Exception as e:
print(e)
print(f"{file} 未能成功加载")
return f"{file} 未能成功加载"
elif os.path.isdir(filepath):
docs = []
for file in os.listdir(filepath):
fullfilepath = os.path.join(filepath, file)
try:
docs += self.load_file(fullfilepath)
print(f"{file} 已成功加载")
loaded_files.append(fullfilepath)
except Exception as e:
print(e)
print(f"{file} 未能成功加载")
else:
docs = []
for file in filepath:
try:
docs += self.load_file(file)
print(f"{file} 已成功加载")
loaded_files.append(file)
except Exception as e:
print(e)
print(f"{file} 未能成功加载")
if len(docs) > 0:
if VECTOR_STORE_PATH and os.path.isdir(VECTOR_STORE_PATH):
vector_store = Qdrant.from_documents(
docs,
self.embeddings,
path=VECTOR_STORE_PATH,
collection_name=COLLECTION_NAME,
)
vector_store.add_documents(docs)
else:
vector_store = Qdrant.from_documents(
docs,
self.embeddings,
path=VECTOR_STORE_PATH,
collection_name=COLLECTION_NAME,
)
return "文件均未成功加载,请检查依赖包或文件路径。", loaded_files
else:
print("文件均未成功加载,请检查依赖包或文件路径。")
return "文件均未成功加载,请检查依赖包或文件路径。", loaded_files
def get_knowledge_based_answer(self,
query,
web_content,
top_k: int = 6,
history_len: int = 3,
temperature: float = 0.01,
top_p: float = 0.1,
history=[]):
self.llm.temperature = temperature
self.llm.top_p = top_p
self.history_len = history_len
self.top_k = top_k
if web_content:
prompt_template = f"""基于以下已知信息,简洁和专业的来回答用户的问题。
如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
已知网络检索内容:{web_content}""" + """
已知内容:
{context}
问题:
{question}"""
else:
prompt_template = """基于以下已知信息,请简洁并专业地回答用户的问题。
如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息"。不允许在答案中添加编造成分。另外,答案请使用中文。
已知内容:
{context}
问题:
{question}"""
prompt = PromptTemplate(template=prompt_template,
input_variables=["context", "question"])
self.llm.history = history[
-self.history_len:] if self.history_len > 0 else []
client = qdrant_client.QdrantClient(path=VECTOR_STORE_PATH,
prefer_grpc=True)
qdrant = Qdrant(client=client,
collection_name=COLLECTION_NAME,
embedding_function=self.embeddings.embed_query)
knowledge_chain = RetrievalQA.from_llm(
llm=self.llm,
retriever=qdrant.as_retriever(search_kwargs={"k": self.top_k}),
prompt=prompt)
knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate(
input_variables=["page_content"], template="{page_content}")
knowledge_chain.return_source_documents = True
result = knowledge_chain({"query": query})
return result
def load_file(self, filepath):
if filepath.lower().endswith(".md"):
loader = UnstructuredFileLoader(filepath, mode="elements")
docs = loader.load()
elif filepath.lower().endswith(".pdf"):
loader = UnstructuredFileLoader(filepath)
textsplitter = ChineseTextSplitter(pdf=True)
docs = loader.load_and_split(textsplitter)
else:
loader = UnstructuredFileLoader(filepath, mode="elements")
textsplitter = ChineseTextSplitter(pdf=False)
docs = loader.load_and_split(text_splitter=textsplitter)
return docs
knowladge_based_chat_llm = KnowledgeBasedChatLLM()
def init_model():
try:
knowladge_based_chat_llm.init_model_config()
knowladge_based_chat_llm.llm._call("你好")
return """初始模型已成功加载"""
except Exception as e:
return """模型未成功加载,请检查后重新尝试"""
@serving
def reinit_model(large_language_model: str, embedding_model: str):
try:
knowladge_based_chat_llm.init_model_config(
large_language_model=large_language_model,
embedding_model=embedding_model)
model_status = """模型已成功重新加载"""
except Exception as e:
model_status = """模型未成功加载,请检查后重新尝试"""
return model_status
@serving
def vector_store(file_path: str or List[str]):
vector_store_state, loaded_files = knowladge_based_chat_llm.init_knowledge_vector_store(
file_path)
return vector_store_state
@serving
def predict(input: str,
use_web: bool, top_k: int, history_len: int, temperature: float,
top_p: float, history: list):
if history == None:
history = []
if use_web == 'True':
web_content = search_web(query=input)
else:
web_content = ''
resp = knowladge_based_chat_llm.get_knowledge_based_answer(
query=input,
web_content=web_content,
top_k=top_k,
history_len=history_len,
temperature=temperature,
top_p=top_p,
history=history)
history.append((input, resp['result']))
print(resp['result'])
return resp['result']
if __name__ == "__main__":
reinit_model(large_language_model='ChatGLM-6B-int8',
embedding_model='text2vec-base')
vector_store(file_path='./README.md')
predict('chatglm-6b的局限性在哪里?',
use_web=False,
top_k=6,
history_len=3,
temperature=0.01,
top_p=0.1,
history=[])