-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathCharacter_Manager.py
339 lines (269 loc) · 15.9 KB
/
Character_Manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import gradio as gr
import os, json
# 在开头加入路径
import os, sys
now_dir = os.getcwd()
sys.path.append(now_dir)
# sys.path.append(os.path.join(now_dir, "tools"))
global state
state = { 'models_path': r"models/gsv",
'character_list': [],
'edited_character_path': '',
'edited_character_name': '',
'ckpt_file_found': [],
'pth_file_found': [],
'wav_file_found': [],
}
global infer_config
infer_config = {
}
# 取得模型文件夹路径
config_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), "config.json")
if os.path.exists(config_path):
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
state["models_path"] = config.get("models_path", "models/gsv")
locale_language = str(config.get("locale", "auto"))
locale_language = None if locale_language.lower() == "auto" else locale_language
from tools.i18n.i18n import I18nAuto
from Adapters.gsv_fast.config_manager import inference_config
i18n = I18nAuto(locale_language ,os.path.join(os.path.dirname(os.path.dirname(__file__)), "i18n/locale"))
# 微软提供的SSML情感表
emotional_styles = [
"default",
"advertisement_upbeat", "affectionate", "angry", "assistant", "calm", "chat", "cheerful",
"customerservice", "depressed", "disgruntled", "documentary-narration", "embarrassed",
"empathetic", "envious", "excited", "fearful", "friendly", "gentle", "hopeful", "lyrical",
"narration-professional", "narration-relaxed", "newscast", "newscast-casual", "newscast-formal",
"poetry-reading", "sad", "serious", "shouting", "sports_commentary", "sports_commentary_excited",
"whispering", "terrified", "unfriendly"
]
language_list = ["auto", "zh", "en", "ja", "all_zh", "all_ja"]
translated_language_list = [i18n(language) for language in language_list]
language_dict = dict(zip(translated_language_list, language_list))
translated_language_dict = dict(zip(language_list, translated_language_list))
translated_language_dict.update(dict(zip(translated_language_list, translated_language_list)))
translated_language_dict["多语种混合"] = i18n("auto")
# 预先建立相当数量的情感选择框
all_emotion_num=len(emotional_styles)
def generate_info_bar():
current_character_textbox = gr.Textbox(value=state['edited_character_name'], label=i18n("当前人物"), interactive=False)
version_textbox = gr.Textbox(value=infer_config['version'], label=i18n("版本"), interactive=True)
gpt_model_dropdown = gr.Dropdown(choices=state['ckpt_file_found'], label=i18n("GPT模型路径"), interactive=True, value=infer_config['gpt_path'], allow_custom_value=True)
sovits_model_dropdown = gr.Dropdown(choices=state['pth_file_found'], label=i18n("Sovits模型路径"), interactive=True, value=infer_config['sovits_path'], allow_custom_value=True)
column_items = [current_character_textbox, version_textbox, gpt_model_dropdown, sovits_model_dropdown]
index = 0
for item in infer_config['emotion_list']:
emotion, details = item
index += 1
column_items.append(gr.Number(index, visible=True, scale=1))
column_items.append(gr.Dropdown(choices=translated_language_list, value=translated_language_dict[details['prompt_language']], visible=True, interactive=True, scale=3, label=i18n("提示语言")))
column_items.append(gr.Dropdown(choices=emotional_styles, value=emotion, visible=True, interactive=True, scale=3, allow_custom_value=True, label=i18n("情感风格")))
column_items.append(gr.Dropdown(choices=state["wav_file_found"], visible=True, value=details['ref_wav_path'], scale=8, allow_custom_value=True, label=i18n("参考音频路径")))
column_items.append(gr.Textbox(value=details['prompt_text'], visible=True, scale=8, interactive=True, label=i18n("提示文本")))
column_items.append(gr.Audio(os.path.join(state["edited_character_path"], details['ref_wav_path']), visible=True, scale=8, label=i18n("音频预览")))
for i in range(all_emotion_num - index):
column_items.append(gr.Number(i, visible=False))
column_items.append(gr.Dropdown(visible=False))
column_items.append(gr.Dropdown(visible=False))
column_items.append(gr.Dropdown(visible=False))
column_items.append(gr.Textbox(visible=False))
column_items.append(gr.Audio(None, visible=False))
return column_items
def load_json_to_state(data):
infer_config['version'] = data.get('version','')
emotional_list = data.get('emotion_list',{})
for emotion, details in emotional_list.items():
infer_config['emotion_list'].append([emotion,details])
infer_config['gpt_path'] = data['gpt_path']
infer_config['sovits_path'] = data['sovits_path']
return generate_info_bar()
def split_file_name(file_name):
try :
base_name=os.path.basename(file_name)
except:
base_name=file_name
final_name = os.path.splitext(base_name)[0]
return final_name
def clear_infer_config():
global infer_config
infer_config = {
'version': '1.0.1',
'gpt_path': '',
'sovits_path': '',
'emotion_list': [],
}
clear_infer_config()
def read_json_from_file(character_dropdown,models_path ):
state['edited_character_name'] = character_dropdown
state['models_path']=models_path
state['edited_character_path'] = os.path.join(state['models_path'], state['edited_character_name'])
state['ckpt_file_found'], state['pth_file_found'], state['wav_file_found'] = scan_files(state['edited_character_path'])
print(i18n("当前人物变更为: ")+state['edited_character_name'])
clear_infer_config()
json_path = os.path.join(state['edited_character_path'], "infer_config.json")
# 从json文件中读取数据
with open(json_path, "r", encoding='utf-8') as f:
data = json.load(f)
return load_json_to_state(data)
def save_json():
if infer_config['gpt_path'] == '' or infer_config['gpt_path'] is None:
gr.Error(i18n("缺失某些项,保存失败!"))
raise Exception(i18n("缺失某些项,保存失败!"))
json_path = os.path.join(state['edited_character_path'], "infer_config.json")
data = {
'version': infer_config['version'],
'gpt_path': infer_config['gpt_path'],
'sovits_path': infer_config['sovits_path'],
i18n("简介"): i18n(r"这是一个配置文件适用于https://github.com/X-T-E-R/TTS-for-GPT-soVITS,是一个简单好用的前后端项目"),
'emotion_list': {}
}
for item in infer_config['emotion_list']:
data['emotion_list'][item[0]] = item[1]
try:
# 将state中的数据保存到json文件中
with open(json_path, "w", encoding='utf-8') as f:
json.dump(data, f, ensure_ascii=False, indent=4)
gr.Info(i18n("保存成功!"))
except:
gr.Error(i18n("文件打开失败,保存失败!"))
raise Exception(i18n("保存失败!"))
def scan_files(character_path):
ckpt_file_found = []
pth_file_found = []
wav_file_found = []
# 扫描3种文件
for dirpath, dirnames, filenames in os.walk(character_path):
for file in filenames:
# 构建文件的完整路径
full_path = os.path.join(dirpath, file)
rev_path = os.path.relpath(full_path, character_path)
print(full_path)
# 根据文件扩展名和变量是否已赋值来更新变量
if file.lower().endswith(".ckpt"):
ckpt_file_found.append(rev_path)
elif file.lower().endswith(".pth"):
pth_file_found.append(rev_path)
elif file.lower().endswith(".wav"):
wav_file_found.append(rev_path)
return ckpt_file_found, pth_file_found, wav_file_found
def auto_generate_json(character_dropdown, models_path):
# 将选中人物设定为当前人物
state['edited_character_name'] = character_dropdown
state['models_path'] = models_path
state['edited_character_path'] = os.path.join(state['models_path'], state['edited_character_name'])
print(i18n(f"当前人物变更为: {state['edited_character_name']}"))
clear_infer_config()
character_path = state['edited_character_path']
ckpt_file_found, pth_file_found, wav_file_found = scan_files(character_path)
if len(ckpt_file_found) == 0 or len(pth_file_found) == 0:
gr.Error(i18n("找不到模型文件!请把有效文件放置在文件夹下!!!"))
raise Exception(i18n("找不到模型文件!请把有效文件放置在文件夹下!!!"))
else:
state['ckpt_file_found'] = ckpt_file_found
state['pth_file_found'] = pth_file_found
state['wav_file_found'] = wav_file_found
gpt_path = ckpt_file_found[0]
sovits_path = pth_file_found[0]
infer_config['gpt_path'] = gpt_path
infer_config['sovits_path'] = sovits_path
if len(wav_file_found) == 0:
return generate_info_bar()
else:
return add_emotion()
def scan_subfolder(models_path):
subfolders = [os.path.basename(f.path) for f in os.scandir(models_path) if f.is_dir()]
state['models_path'] = models_path
state['character_list'] = subfolders
print(i18n("扫描模型文件夹:")+models_path)
print(i18n(f"找到的角色列表:") + str(subfolders))
gr.Info(i18n(f"找到的角色列表:") + str(subfolders))
d2 = gr.Dropdown(subfolders)
return d2
def add_emotion():
unused_emotional_style = ''
for style in emotional_styles:
style_in_list = False
for item in infer_config['emotion_list']:
if style == item[0]:
style_in_list = True
break
if not style_in_list:
unused_emotional_style = style
break
ref_wav_path = state['wav_file_found'][0]
infer_config['emotion_list'].append([f'{unused_emotional_style}', {
'ref_wav_path':ref_wav_path,'prompt_text':split_file_name(ref_wav_path),'prompt_language':translated_language_dict['auto']}])
return generate_info_bar()
def change_pt_files(version_textbox, sovits_model_dropdown, gpt_model_dropdown):
infer_config['version'] = version_textbox
infer_config['sovits_path'] = sovits_model_dropdown
infer_config['gpt_path'] = gpt_model_dropdown
pass
def change_parameters(index, wav_path, emotion_list, prompt_language, prompt_text = ""):
# Convert index to integer in case it's passed as a string
index = int(index)
if prompt_text=="" or prompt_text is None:
prompt_text = split_file_name(wav_path)
infer_config['emotion_list'][index-1][0]=emotion_list
infer_config['emotion_list'][index-1][1]['ref_wav_path'] = wav_path
infer_config['emotion_list'][index-1][1]['prompt_text'] = prompt_text
infer_config['emotion_list'][index-1][1]['prompt_language'] = language_dict[prompt_language]
return gr.Dropdown(value=wav_path), gr.Dropdown(value=emotion_list), gr.Dropdown(value=prompt_language), gr.Textbox(value=prompt_text), gr.Audio(os.path.join(state["edited_character_path"],wav_path))
def run_as_tab(app: gr.Blocks):
with gr.Row() as status_bar:
# 创建模型文件夹路径的输入框
models_path = gr.Textbox(value=state["models_path"], label=i18n("模型文件夹路径"), scale=3)
# 创建扫描按钮并设置点击事件
scan_button = gr.Button(i18n("扫描"), scale=1, variant="primary")
# 创建角色列表的下拉菜单,初始为空
character_dropdown = gr.Dropdown([], label=i18n("选择角色"), scale=3)
# 创建从json中读取按钮并设置点击事件
read_info_from_json_button = gr.Button(i18n("从json中读取"), size="lg", scale=2, variant="secondary")
# 创建自动生成json的按钮并设置点击事件
auto_generate_info_button = gr.Button(i18n("自动生成info"), size="lg", scale=2, variant="primary")
scan_button.click(scan_subfolder, inputs=[models_path], outputs=[character_dropdown])
gr.HTML(i18n("""<p>这是模型管理界面,为了实现对多段参考音频分配情感设计,如果您只有一段可不使用这个界面</p><p>若有疑问或需要进一步了解,可参考文档:<a href="https://www.yuque.com/xter/zibxlp/hme8bw2r28vad3le">点击查看详细文档</a>。</p>"""))
gr.Markdown(i18n("请修改后点击下方按钮进行保存"))
# 创建保存json的按钮并设置点击事件
with gr.Row() as submit_bar:
save_json_button = gr.Button(i18n("保存json\n(可能不会有完成提示,没报错就是成功)"), scale=2, variant="primary")
save_json_button.click(save_json)
# 模型信息
with gr.Row():
with gr.Column(scale=1):
current_character_textbox = gr.Textbox(value=state['edited_character_name'], label=i18n("当前人物"), interactive=False)
version_textbox = gr.Textbox(value=infer_config['version'], label=i18n("版本"))
gpt_model_dropdown = gr.Dropdown(choices=state['ckpt_file_found'], label=i18n("GPT模型路径"))
sovits_model_dropdown = gr.Dropdown(choices=state['pth_file_found'], label=i18n("Sovits模型路径"))
version_textbox.blur(change_pt_files, inputs=[version_textbox, sovits_model_dropdown, gpt_model_dropdown], outputs=None)
gpt_model_dropdown.input(change_pt_files, inputs=[version_textbox, sovits_model_dropdown, gpt_model_dropdown], outputs=None)
sovits_model_dropdown.input(change_pt_files, inputs=[version_textbox, sovits_model_dropdown, gpt_model_dropdown], outputs=None)
column_items = [current_character_textbox, version_textbox, gpt_model_dropdown, sovits_model_dropdown]
with gr.Column(scale=3):
add_emotion_button = gr.Button(i18n("添加情感"), size="lg", scale=2, variant="primary")
for index in range(all_emotion_num):
with gr.Row() as emotion_row:
row_index = gr.Number(visible=False)
emotional_list = gr.Dropdown(visible=False)
prompt_language = gr.Dropdown(visible=False)
wav_path = gr.Dropdown(visible=False)
prompt_text = gr.Textbox(visible=False)
audio_preview = gr.Audio(visible=False, type="filepath")
emotional_list.input(change_parameters, inputs=[row_index, wav_path, emotional_list, prompt_language, prompt_text], outputs=[wav_path, emotional_list, prompt_language, prompt_text, audio_preview])
prompt_language.input(change_parameters, inputs=[row_index, wav_path, emotional_list, prompt_language, prompt_text], outputs=[wav_path, emotional_list, prompt_language, prompt_text, audio_preview])
wav_path.input(change_parameters, inputs=[row_index, wav_path, emotional_list, prompt_language], outputs=[wav_path, emotional_list, prompt_language, prompt_text, audio_preview])
prompt_text.input(change_parameters, inputs=[row_index, wav_path, emotional_list, prompt_language, prompt_text], outputs=[wav_path, emotional_list, prompt_language, prompt_text, audio_preview])
column_items.append(row_index)
column_items.append(prompt_language)
column_items.append(emotional_list)
column_items.append(wav_path)
column_items.append(prompt_text)
column_items.append(audio_preview)
add_emotion_button.click(add_emotion, outputs=column_items)
read_info_from_json_button.click(read_json_from_file, inputs=[character_dropdown,models_path] , outputs=column_items)
auto_generate_info_button.click(auto_generate_json, inputs=[character_dropdown,models_path], outputs=column_items)
if __name__ == '__main__':
with gr.Blocks() as app:
run_as_tab(app)
app.launch(server_port=9868, show_error=True,debug=True, inbrowser=True, share=inference_config.is_share)