forked from THUYimingLi/BackdoorBox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_Blind.py
277 lines (231 loc) · 6.88 KB
/
test_Blind.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
'''
This is the test code of poisoned training on GTSRB, CIFAR10, MNIST, using dataset class of torchvision.datasets.DatasetFolder torchvision.datasets.CIFAR10 torchvision.datasets.MNIST.
The attack method is Blind.
'''
import os
from typing import Pattern
import cv2
import torch
import torch.nn as nn
from torch.utils.data import Dataset, dataloader
import torchvision
from torchvision.transforms import Compose, ToTensor, PILToTensor, RandomHorizontalFlip
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.datasets import DatasetFolder, CIFAR10, MNIST
import core
global_seed = 666
deterministic = True
torch.manual_seed(global_seed)
alpha = torch.zeros(3,32,32)
alpha[:,-3:,-3:]=1.
pattern = torch.zeros(3,32,32)
pattern[:,-3:,-3:]=1.
def show_dataset(dataset, num, path_to_save):
"""Each image in dataset should be torch.Tensor, shape (C,H,W)"""
import matplotlib.pyplot as plt
plt.figure(figsize=(20,20))
for i in range(num):
ax = plt.subplot(num,1,i+1)
img = (dataset[i][0]).permute(1,2,0).cpu().detach().numpy()
ax.imshow(img)
plt.savefig(path_to_save)
# ===== Train backdoored model on GTSRB using with DatasetFolder ======
# Prepare datasets
transform_train = Compose([
transforms.ToPILImage(),
transforms.Resize((32, 32)),
RandomHorizontalFlip(),
ToTensor(),
])
transform_test = Compose([
transforms.ToPILImage(),
transforms.Resize((32, 32)),
ToTensor(),
])
trainset = DatasetFolder(
root='/data/ganguanhao/datasets/GTSRB/train', # please replace this with path to your training set
loader=cv2.imread,
extensions=('png',),
transform=transform_train,
target_transform=None,
is_valid_file=None)
testset = DatasetFolder(
root='/data/ganguanhao/datasets/GTSRB/testset', # please replace this with path to your test set
loader=cv2.imread,
extensions=('png',),
transform=transform_train,
target_transform=None,
is_valid_file=None)
# Configure the attack scheme
blind= core.Blind(
train_dataset=trainset,
test_dataset=testset,
model=core.models.ResNet(18, 43),
loss=nn.CrossEntropyLoss(),
y_target=1,
pattern=pattern,
alpha=alpha,
schedule=None,
seed=global_seed,
deterministic=deterministic,
use_neural_cleanse=False,
)
schedule = {
'device': 'GPU',
'CUDA_VISIBLE_DEVICES': '0',
'GPU_num': 1,
'benign_training': False,
'batch_size': 128,
'num_workers': 8,
'lr': 0.1,
'momentum': 0.9,
'weight_decay': 5e-4,
'gamma': 0.1,
'schedule': [50, 75],
'epochs': 100,
'log_iteration_interval': 100,
'test_epoch_interval': 10,
'save_epoch_interval': 10,
'save_dir': 'experiments',
'experiment_name': 'train_poison_DataFolder_GTSRB_Blind'
}
# Train backdoored model
blind.train(schedule)
poisoned_trainset, poisoned_testset = blind.get_poisoned_dataset()
show_dataset(poisoned_trainset, 5, 'gtsrb_train_poison.png')
show_dataset(poisoned_testset, 5, 'gtsrb_test_poison.png')
# # ===== Train backdoored model on GTSRB using with DatasetFolder (done) ======
# # ===== Train backdoored model on CIFAR10 using with CIFAR10 =====
# Prepare datasets
transform_train = Compose([
transforms.Resize((32, 32)),
RandomHorizontalFlip(),
ToTensor(),
# transforms.Normalize((0.485, 0.456, 0.406),
# (0.229, 0.224, 0.225))
])
transform_test = Compose([
transforms.Resize((32, 32)),
ToTensor(),
# transforms.Normalize((0.485, 0.456, 0.406),
# (0.229, 0.224, 0.225))
])
trainset = CIFAR10(
root='/data/ganguanhao/datasets', # please replace this with path to your dataset
transform=transform_train,
target_transform=None,
train=True,
download=True)
testset = CIFAR10(
root='/data/ganguanhao/datasets', # please replace this with path to your dataset
transform=transform_test,
target_transform=None,
train=False,
download=True)
blind= core.Blind(
train_dataset=trainset,
test_dataset=testset,
model=core.models.ResNet(18),
loss=nn.CrossEntropyLoss(),
y_target=1,
pattern=pattern,
alpha=alpha,
schedule=None,
seed=global_seed,
deterministic=deterministic,
use_neural_cleanse=False,
)
schedule = {
'device': 'GPU',
'CUDA_VISIBLE_DEVICES': '0',
'GPU_num': 1,
'benign_training': False,
'batch_size': 128,
# 'batch_size': 64,
'num_workers': 8,
'lr': 0.1,
'momentum': 0.9,
'weight_decay': 5e-4,
'gamma': 0.1,
'schedule': [50, 75],
'epochs': 100,
'log_iteration_interval': 100,
'test_epoch_interval': 10,
'save_epoch_interval': 10,
'save_dir': 'experiments',
'experiment_name': 'train_poison_CIFAR10_Blind'
}
# Train backdoored model
blind.train(schedule)
poisoned_trainset, poisoned_testset = blind.get_poisoned_dataset()
show_dataset(poisoned_trainset, 5, 'cifar_train_poison.png')
show_dataset(poisoned_testset, 5, 'cifar_test_poison.png')
# ===== Train backdoored model on CIFAR10 using with CIFAR10 (done)=====
# ===== Train backdoored model on MNIST using with MNIST =====
# Prepare datasets
transform_train = Compose([
transforms.Resize((28, 28)),
RandomHorizontalFlip(),
ToTensor(),
])
transform_test = Compose([
transforms.Resize((28, 28)),
ToTensor(),
])
trainset = MNIST(
root='/data/ganguanhao/datasets', # please replace this with path to your dataset
transform=transform_train,
target_transform=None,
train=True,
download=True)
testset = MNIST(
root='/data/ganguanhao/datasets', # please replace this with path to your dataset
transform=transform_test,
target_transform=None,
train=False,
download=True)
loader = DataLoader(trainset,)
alpha = torch.zeros(1,28,28)
alpha[:,-3:,-3:]=1.
pattern = torch.zeros(1,28,28)
pattern[:,-3:,-3:]=1.
# Configure the attack scheme
blind= core.Blind(
train_dataset=trainset,
test_dataset=testset,
model=core.models.BaselineMNISTNetwork(),
loss=nn.CrossEntropyLoss(),
y_target=1,
pattern=pattern,
alpha=alpha,
schedule=None,
seed=global_seed,
deterministic=deterministic,
use_neural_cleanse=False,
)
schedule = {
'device': 'GPU',
'CUDA_VISIBLE_DEVICES': '0',
'GPU_num': 1,
'benign_training': False,
'batch_size': 128,
'num_workers': 8,
'lr': 0.1,
'momentum': 0.9,
'weight_decay': 5e-4,
'gamma': 0.1,
'schedule': [10, 15],
'epochs': 20,
'log_iteration_interval': 100,
'test_epoch_interval': 5,
'save_epoch_interval': 5,
'save_dir': 'experiments',
'experiment_name': 'train_poison_MNIST_Blind'
}
# Train backdoored model
blind.train(schedule)
poisoned_trainset, poisoned_testset = blind.get_poisoned_dataset()
show_dataset(poisoned_trainset, 5, 'mnist_train_poison.png')
show_dataset(poisoned_testset, 5, 'mnist_test_poison.png')
# # ===== Train backdoored model on MNIST using with MNIST (done)=====