forked from GreycLab/CImg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmcf_levelsets3d.cpp
180 lines (165 loc) · 7.66 KB
/
mcf_levelsets3d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/*
#
# File : mcf_levelsets3d.cpp
# ( C++ source file )
#
# Description : Implementation of the Mean Curvature Flow on Surfaces
# using the framework of Level Sets 3D.
# This file is a part of the CImg Library project.
# ( http://cimg.eu )
#
# Copyright : David Tschumperlé
# ( http://tschumperle.users.greyc.fr/ )
#
# License : CeCILL v2.0
# ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
#
*/
#include "CImg.h"
using namespace cimg_library;
#undef min
#undef max
// Apply the Mean curvature flow PDE
//-----------------------------------
template<typename T> CImg<T>& mcf_PDE(CImg<T>& img, const unsigned int nb_iterations,
const float dt=0.25f, const float narrow=4.0f) {
CImg<float> velocity(img.width(),img.height(),img.depth(),img.spectrum());
CImg_3x3x3(I,float);
for (unsigned int iteration = 0; iteration<nb_iterations; ++iteration) {
float *ptrd = velocity.data(), veloc_max = 0;
cimg_for3x3x3(img,x,y,z,0,I,float) if (cimg::abs(Iccc)<narrow) {
const float
ix = (Incc - Ipcc)/2,
iy = (Icnc - Icpc)/2,
iz = (Iccn - Iccp)/2,
norm = (float)std::sqrt(1e-5f + ix*ix + iy*iy + iz*iz),
ixx = Incc + Ipcc - 2*Iccc,
ixy = (Ippc + Innc - Inpc - Ipnc)/4,
ixz = (Ipcp + Incn - Incp - Ipcn)/4,
iyy = Icnc + Icpc - 2*Iccc,
iyz = (Icpp + Icnn - Icnp - Icpn)/4,
izz = Iccn + Iccp - 2*Iccc,
a = ix/norm,
b = iy/norm,
c = iz/norm,
inn = a*a*ixx + b*b*iyy + c*c*izz + 2*a*b*ixy + 2*a*c*ixz + 2*b*c*iyz,
veloc = ixx + iyy + izz - inn;
*(ptrd++) = veloc;
if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc;
} else *(ptrd++) = 0;
if (veloc_max>0) img+=(velocity*=dt/veloc_max);
}
return img;
}
/*----------------------
Main procedure
--------------------*/
int main(int argc,char **argv) {
cimg_usage("Mean curvature flow of a surface, using 3D level sets");
const char *file_i = cimg_option("-i",(char*)0,"Input image");
const float dt = cimg_option("-dt",0.05f,"PDE Time step");
const float narrow = cimg_option("-band",5.0f,"Size of the narrow band");
const bool both = cimg_option("-both",false,"Show both evolving and initial surface");
// Define the signed distance map of the initial surface.
CImg<> img;
if (file_i) {
const float sigma = cimg_option("-sigma",1.2f,"Segmentation regularity");
const float alpha = cimg_option("-alpha",5.0f,"Region growing tolerance");
img.load(file_i).channel(0);
CImg<int> s;
CImgDisplay disp(img,"Please select a starting point");
while (!s || s[0]<0) s = img.get_select(0,disp);
CImg<> region;
float tmp[] = { 0 };
img.draw_fill(s[0],s[1],s[2],tmp,1,region,alpha);
((img = region.normalize(-1,1))*=-1).blur(sigma);
}
else { // Create synthetic implicit function
img.assign(60,60,60);
const float exte[] = { 1 }, inte[] = { -1 };
img.fill(*exte).draw_rectangle(15,15,15,45,45,45,inte).draw_rectangle(25,25,0,35,35,img.depth() - 1,exte).
draw_rectangle(0,25,25,img.width() - 1,35,35,exte).draw_rectangle(25,0,25,35,img.height() - 1,35,exte).noise(0.7);
}
img.distance_eikonal(10,0,0.1f);
// Compute corresponding surface triangularization by the marching cube algorithm (isovalue 0).
CImg<> points0;
CImgList<unsigned int> faces0;
if (both) points0 = img.get_isosurface3d(faces0,0);
const CImgList<unsigned char> colors0(faces0.size(),CImg<unsigned char>::vector(100,200,255));
const CImgList<> opacities0(faces0.size(),1,1,1,1,0.2f);
// Perform MCF evolution.
CImgDisplay disp(256,256,0,1), disp3d(512,512,0,0);
float alpha = 0, beta = 0;
for (unsigned int iteration = 0; !disp.is_closed() && !disp3d.is_closed() &&
!disp.is_keyESC() && !disp3d.is_keyESC() && !disp.is_keyQ() && !disp3d.is_keyQ(); ++iteration) {
disp.set_title("3D implicit Function (iter. %u)",iteration);
disp3d.set_title("Mean curvature flow 3D - Isosurface (iter. %u)",iteration);
// Apply PDE on the distance function.
mcf_PDE(img,1,dt,narrow); // Do one iteration of mean curvature flow
// Every 10 steps, do one iteration of distance function re-initialization.
if (!(iteration%10)) img.distance_eikonal(1,narrow,0.5f);
// Compute surface triangularization by the marching cube algorithm (isovalue 0)
CImgList<unsigned int> faces;
CImg<> points = img.get_isosurface3d(faces,0);
CImgList<unsigned char> colors(faces.size(),CImg<unsigned char>::vector(200,128,100));
CImgList<> opacities(faces.size(),CImg<>::vector(1.0f));
const float fact = 3*std::max(disp3d.width(),disp3d.height())/(4.0f*std::max(img.width(),img.height()));
// Append initial object if necessary.
if (both) {
points.append_object3d(faces,points0,faces0);
colors.insert(colors0);
opacities.insert(opacities0);
}
// Center and rescale the objects
cimg_forX(points,l) {
points(l,0)=(points(l,0) - img.width()/2)*fact;
points(l,1)=(points(l,1) - img.height()/2)*fact;
points(l,2)=(points(l,2) - img.depth()/2)*fact;
}
// Display 3D object on the display window.
CImg<unsigned char> visu(disp3d.width(),disp3d.height(),1,3,0);
const CImg<> rot = CImg<>::rotation_matrix(1,0,0,(beta+=0.5f))*CImg<>::rotation_matrix(0,1,1,(alpha+=3));
if (points.size()) {
visu.draw_object3d(visu.width()/2.0f,visu.height()/2.0f,0.0f,
rot*points,faces,colors,opacities,3,
false,500.0,0.0f,0.0f,-8000.0f).display(disp3d);
} else visu.fill(0).display(disp3d);
img.display(disp.wait(20));
if ((disp3d.button() || disp3d.key()) && points.size() && !disp3d.is_keyESC() && !disp3d.is_keyQ()) {
const unsigned char white[3] = { 255, 255, 255 };
visu.fill(0).draw_text(10,10,"Time stopped, press any key to start again",white).
display_object3d(disp3d,points,faces,colors,opacities,true,4,3,false,500,0,0,-5000,0.4f,0.3f);
disp3d.set_key();
}
if (disp.is_resized()) disp.resize(false);
if (disp3d.is_resized()) disp3d.resize(false);
disp.wait(50);
}
return 0;
}