-
Notifications
You must be signed in to change notification settings - Fork 295
/
train_stage2.py
248 lines (222 loc) · 9.07 KB
/
train_stage2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
from argparse import ArgumentParser
import copy
from omegaconf import OmegaConf
import torch
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
from accelerate import Accelerator
from accelerate.utils import set_seed
from einops import rearrange
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from diffbir.model import ControlLDM, SwinIR, Diffusion
from diffbir.utils.common import instantiate_from_config, to, log_txt_as_img
from diffbir.sampler import SpacedSampler
def main(args) -> None:
# Setup accelerator:
accelerator = Accelerator(split_batches=True)
set_seed(231, device_specific=True)
device = accelerator.device
cfg = OmegaConf.load(args.config)
# Setup an experiment folder:
if accelerator.is_main_process:
exp_dir = cfg.train.exp_dir
os.makedirs(exp_dir, exist_ok=True)
ckpt_dir = os.path.join(exp_dir, "checkpoints")
os.makedirs(ckpt_dir, exist_ok=True)
print(f"Experiment directory created at {exp_dir}")
# Create model:
cldm: ControlLDM = instantiate_from_config(cfg.model.cldm)
sd = torch.load(cfg.train.sd_path, map_location="cpu")["state_dict"]
unused, missing = cldm.load_pretrained_sd(sd)
if accelerator.is_main_process:
print(
f"strictly load pretrained SD weight from {cfg.train.sd_path}\n"
f"unused weights: {unused}\n"
f"missing weights: {missing}"
)
if cfg.train.resume:
cldm.load_controlnet_from_ckpt(torch.load(cfg.train.resume, map_location="cpu"))
if accelerator.is_main_process:
print(
f"strictly load controlnet weight from checkpoint: {cfg.train.resume}"
)
else:
init_with_new_zero, init_with_scratch = cldm.load_controlnet_from_unet()
if accelerator.is_main_process:
print(
f"strictly load controlnet weight from pretrained SD\n"
f"weights initialized with newly added zeros: {init_with_new_zero}\n"
f"weights initialized from scratch: {init_with_scratch}"
)
swinir: SwinIR = instantiate_from_config(cfg.model.swinir)
sd = torch.load(cfg.train.swinir_path, map_location="cpu")
if "state_dict" in sd:
sd = sd["state_dict"]
sd = {
(k[len("module.") :] if k.startswith("module.") else k): v
for k, v in sd.items()
}
swinir.load_state_dict(sd, strict=True)
for p in swinir.parameters():
p.requires_grad = False
if accelerator.is_main_process:
print(f"load SwinIR from {cfg.train.swinir_path}")
diffusion: Diffusion = instantiate_from_config(cfg.model.diffusion)
# Setup optimizer:
opt = torch.optim.AdamW(cldm.controlnet.parameters(), lr=cfg.train.learning_rate)
# Setup data:
dataset = instantiate_from_config(cfg.dataset.train)
loader = DataLoader(
dataset=dataset,
batch_size=cfg.train.batch_size,
num_workers=cfg.train.num_workers,
shuffle=True,
drop_last=True,
pin_memory=True,
)
if accelerator.is_main_process:
print(f"Dataset contains {len(dataset):,} images")
batch_transform = instantiate_from_config(cfg.batch_transform)
# Prepare models for training:
cldm.train().to(device)
swinir.eval().to(device)
diffusion.to(device)
cldm, opt, loader = accelerator.prepare(cldm, opt, loader)
pure_cldm: ControlLDM = accelerator.unwrap_model(cldm)
noise_aug_timestep = cfg.train.noise_aug_timestep
# Variables for monitoring/logging purposes:
global_step = 0
max_steps = cfg.train.train_steps
step_loss = []
epoch = 0
epoch_loss = []
sampler = SpacedSampler(
diffusion.betas, diffusion.parameterization, rescale_cfg=False
)
if accelerator.is_main_process:
writer = SummaryWriter(exp_dir)
print(f"Training for {max_steps} steps...")
while global_step < max_steps:
pbar = tqdm(
iterable=None,
disable=not accelerator.is_main_process,
unit="batch",
total=len(loader),
)
for batch in loader:
to(batch, device)
batch = batch_transform(batch)
gt, lq, prompt = batch
gt = rearrange(gt, "b h w c -> b c h w").contiguous().float()
lq = rearrange(lq, "b h w c -> b c h w").contiguous().float()
with torch.no_grad():
z_0 = pure_cldm.vae_encode(gt)
clean = swinir(lq)
cond = pure_cldm.prepare_condition(clean, prompt)
# noise augmentation
cond_aug = copy.deepcopy(cond)
if noise_aug_timestep > 0:
cond_aug["c_img"] = diffusion.q_sample(
x_start=cond_aug["c_img"],
t=torch.randint(
0, noise_aug_timestep, (z_0.shape[0],), device=device
),
noise=torch.randn_like(cond_aug["c_img"]),
)
t = torch.randint(
0, diffusion.num_timesteps, (z_0.shape[0],), device=device
)
loss = diffusion.p_losses(cldm, z_0, t, cond_aug)
opt.zero_grad()
accelerator.backward(loss)
opt.step()
accelerator.wait_for_everyone()
global_step += 1
step_loss.append(loss.item())
epoch_loss.append(loss.item())
pbar.update(1)
pbar.set_description(
f"Epoch: {epoch:04d}, Global Step: {global_step:07d}, Loss: {loss.item():.6f}"
)
# Log loss values:
if global_step % cfg.train.log_every == 0 and global_step > 0:
# Gather values from all processes
avg_loss = (
accelerator.gather(
torch.tensor(step_loss, device=device).unsqueeze(0)
)
.mean()
.item()
)
step_loss.clear()
if accelerator.is_main_process:
writer.add_scalar("loss/loss_simple_step", avg_loss, global_step)
# Save checkpoint:
if global_step % cfg.train.ckpt_every == 0 and global_step > 0:
if accelerator.is_main_process:
checkpoint = pure_cldm.controlnet.state_dict()
ckpt_path = f"{ckpt_dir}/{global_step:07d}.pt"
torch.save(checkpoint, ckpt_path)
if global_step % cfg.train.image_every == 0 or global_step == 1:
N = 8
log_clean = clean[:N]
log_cond = {k: v[:N] for k, v in cond.items()}
log_cond_aug = {k: v[:N] for k, v in cond_aug.items()}
log_gt, log_lq = gt[:N], lq[:N]
log_prompt = prompt[:N]
cldm.eval()
with torch.no_grad():
z = sampler.sample(
model=cldm,
device=device,
steps=50,
x_size=(len(log_gt), *z_0.shape[1:]),
cond=log_cond,
uncond=None,
cfg_scale=1.0,
progress=accelerator.is_main_process,
)
if accelerator.is_main_process:
for tag, image in [
("image/samples", (pure_cldm.vae_decode(z) + 1) / 2),
("image/gt", (log_gt + 1) / 2),
("image/lq", log_lq),
("image/condition", log_clean),
(
"image/condition_decoded",
(pure_cldm.vae_decode(log_cond["c_img"]) + 1) / 2,
),
(
"image/condition_aug_decoded",
(pure_cldm.vae_decode(log_cond_aug["c_img"]) + 1) / 2,
),
(
"image/prompt",
(log_txt_as_img((512, 512), log_prompt) + 1) / 2,
),
]:
writer.add_image(tag, make_grid(image, nrow=4), global_step)
cldm.train()
accelerator.wait_for_everyone()
if global_step == max_steps:
break
pbar.close()
epoch += 1
avg_epoch_loss = (
accelerator.gather(torch.tensor(epoch_loss, device=device).unsqueeze(0))
.mean()
.item()
)
epoch_loss.clear()
if accelerator.is_main_process:
writer.add_scalar("loss/loss_simple_epoch", avg_epoch_loss, global_step)
if accelerator.is_main_process:
print("done!")
writer.close()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--config", type=str, required=True)
args = parser.parse_args()
main(args)