Delve into the latest exciting research and cutting-edge ideas in quantum machine learning. Implement and run a vast array of different QML applications on your own computer—using simulators from Xanadu, IBM, Google, Rigetti, and many more—or on real hardware devices.
.. gallery-item:: :tooltip: Understand the link between variational quantum models and Fourier series. :figure: demonstrations/expressivity_fourier_series/expressivity_thumbnail.png :description: :doc:`demos/tutorial_expressivity_fourier_series` :tags: autograd
.. gallery-item:: :tooltip: Kernels and alignment training with PennyLane. :figure: demonstrations/kernels_module/QEK_thumbnail.png :description: :doc:`demos/tutorial_kernels_module` :tags: kernels alignment classification
.. gallery-item:: :tooltip: Kernel-based training with scikit-learn. :figure: demonstrations/kernel_based_training/scaling.png :description: :doc:`demos/tutorial_kernel_based_training` :tags: pytorch sklearn kernels
.. gallery-item:: :tooltip: A quantum variational classifier. :figure: demonstrations/variational_classifier/classifier_output_59_0.png :description: :doc:`demos/tutorial_variational_classifier` :tags: autograd
.. gallery-item:: :tooltip: Universal Quantum Classifier with data-reuploading. :figure: demonstrations/data_reuploading/universal_dnn.png :description: :doc:`demos/tutorial_data_reuploading_classifier` :tags: autograd
.. gallery-item:: :tooltip: Quantum transfer learning. :figure: demonstrations/quantum_transfer_learning/transfer_images.png :description: :doc:`demos/tutorial_quantum_transfer_learning` :tags: autograd pytorch
.. gallery-item:: :tooltip: Create a simple QGAN with Cirq and TensorFlow. :figure: demonstrations/QGAN/qgan3.png :description: :doc:`demos/tutorial_QGAN` :tags: cirq tensorflow
.. gallery-item:: :tooltip: Fit one-dimensional noisy data with a quantum neural network. :figure: demonstrations/quantum_neural_net/qnn_output_28_0.png :description: :doc:`demos/quantum_neural_net` :tags: autograd strawberryfields photonics
.. gallery-item:: :tooltip: Using a quantum graph recurrent neural network to learn quantum dynamics. :figure: demonstrations/qgrnn/qgrnn_thumbnail.png :description: :doc:`demos/tutorial_qgrnn` :tags: autograd
.. gallery-item:: :tooltip: Meta-learning technique for variational quantum algorithms. :figure: demonstrations/learning2learn/l2l_thumbnail.png :description: :doc:`demos/learning2learn` :tags: tensorflow
.. gallery-item:: :tooltip: Pre-process images with a quantum convolution. :figure: demonstrations/quanvolution/zoom.png :description: :doc:`demos/tutorial_quanvolution` :tags: tensorflow
.. gallery-item:: :tooltip: Use multiple QPUs to improve classification. :figure: demonstrations/ensemble_multi_qpu/ensemble_diagram.png :description: :doc:`demos/ensemble_multi_qpu` :tags: pytorch forest qiskit
.. gallery-item:: :tooltip: Generate images with Quantums GANs. :figure: demonstrations/quantum_gans/patch.jpeg :description: :doc:`demos/tutorial_quantum_gans` :tags: pytorch
.. gallery-item:: :tooltip: Estimate a classical kernel function on a quantum computer. :figure: demonstrations/classical_kernels/flowchart.PNG :description: :doc:`demos/tutorial_classical_kernels` :tags: kernels approximation
.. gallery-item:: :tooltip: Tensor network quantum circuits :figure: demonstrations/tn_circuits/thumbnail_tn_circuits.png :description: :doc:`demos/tutorial_tn_circuits` :tags: tensor network
.. gallery-item:: :tooltip: Quantum advantage in learning from experiments :figure: demonstrations/learning_from_experiments/learning_from_exp_thumbnail.png :description: :doc:`demos/tutorial_learning_from_experiments` :tags: advantage experiments
.. gallery-item:: :tooltip: Machine learning for quantum many-body problems :figure: demonstrations/ml_classical_shadows/ml_classical_shadow.png :description: :doc:`demos/tutorial_ml_classical_shadows` :tags: kernels manybodyphysics classicalml
.. gallery-item:: :tooltip: Train polynomial approximations to functions using QSP. :figure: demonstrations/function_fitting_qsp/cover.png :description: :doc:`demos/function_fitting_qsp` :tags: pytorch
.. gallery-item:: :tooltip: Generalization in quantum machine learning from few training data :figure: demonstrations/learning_few_data/few_data_thumbnail.png :description: :doc:`demos/tutorial_learning_few_data` :tags: qcnn advantage
.. toctree:: :maxdepth: 2 :hidden: demos/tutorial_expressivity_fourier_series demos/tutorial_kernels_module demos/tutorial_kernel_based_training demos/tutorial_variational_classifier demos/tutorial_data_reuploading_classifier demos/tutorial_quantum_transfer_learning demos/tutorial_QGAN demos/quantum_neural_net demos/tutorial_qgrnn demos/learning2learn demos/tutorial_quanvolution demos/tutorial_ensemble_multi_qpu demos/tutorial_quantum_gans demos/tutorial_learning_from_experiments demos/tutorial_ml_classical_shadows demos/function_fitting_qsp demos/tutorial_learning_few_data