forked from Layne-Huang/PMDM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_frag.py
383 lines (342 loc) · 17.2 KB
/
sample_frag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import argparse
import os
import pickle
import warnings
from statistics import mean
import numpy as np
from Bio import BiopythonWarning
from Bio.PDB.PDBParser import PDBParser
from Bio.PDB.Selection import unfold_entities
from configs.dataset_config import get_dataset_info
from easydict import EasyDict
from evaluation import *
from evaluation.docking import *
# from rdkit.Chem import Draw
from evaluation.sascorer import *
from evaluation.score_func import *
from evaluation.similarity import calculate_diversity
from models.epsnet import get_model
from rdkit import Chem
from rdkit.Chem.Descriptors import MolLogP, qed
from utils.misc import *
from utils.protein_ligand import PDBProtein, parse_sdf_file
from utils.reconstruct import *
from utils.reconstruct_mdm import (build_molecule, make_mol_openbabel,
mol2smiles)
# from sample import * # Import everything from `sample.py`
from utils.sample import *
from utils.sample import construct_dataset_pocket
from utils.transforms import *
from utils.data import torchify_dict
from torch_geometric.data import Batch
FOLLOW_BATCH = ['ligand_atom_feature','protein_atom_feature_full']
atomic_numbers_crossdock = torch.LongTensor([1,6,7,8,9,15,16,17])
atomic_numbers_pocket = torch.LongTensor([1,6,7,8,9,15,16,17,34,119])
atomic_numbers_pdbind = torch.LongTensor([1, 5, 6, 7, 8, 9, 14, 15, 16, 17, 23, 26, 27, 29, 33, 34, 35, 44, 51, 53, 78])
P_ligand_element_100 = torch.LongTensor([1, 5, 6, 7, 8, 9, 14, 15, 16, 17, 23, 26, 29, 33, 34, 35, 44, 51, 53, 78])
# P_ligand_element_filter = torch.LongTensor([1, 35, 5, 6, 7, 8, 9, 15, 16, 17, 53])
P_ligand_element_filter = torch.LongTensor([1, 5, 6, 7, 8, 9, 15, 16, 17, 35, 53])
def save_sdf(mol,sdf_dir,gen_file_name):
writer = Chem.SDWriter(os.path.join(sdf_dir, gen_file_name))
writer.write(mol, confId=0)
writer.close()
def pdb_to_pocket_data(pdb_path, center=0, bbox_size=0):
center = torch.FloatTensor(center)
warnings.simplefilter('ignore', BiopythonWarning)
ptable = Chem.GetPeriodicTable()
parser = PDBParser()
model = parser.get_structure(None, pdb_path)[0]
protein_dict = EasyDict({
'element': [],
'pos': [],
'is_backbone': [],
'atom_to_aa_type': [],
})
for atom in unfold_entities(model, 'A'):
res = atom.get_parent()
resname = res.get_resname()
if resname == 'MSE': resname = 'MET'
if resname not in PDBProtein.AA_NAME_NUMBER: continue # Ignore water, heteros, and non-standard residues.
element_symb = atom.element.capitalize()
if element_symb == 'H': continue
x, y, z = atom.get_coord()
pos = torch.FloatTensor([x, y, z])
# if (pos - center).abs().max() > (bbox_size / 2):
# continue
protein_dict['element'].append( ptable.GetAtomicNumber(element_symb))
protein_dict['pos'].append(pos)
protein_dict['is_backbone'].append(atom.get_name() in ['N', 'CA', 'C', 'O'])
protein_dict['atom_to_aa_type'].append(PDBProtein.AA_NAME_NUMBER[resname])
# if len(protein_dict['element']) == 0:
# raise ValueError('No atoms found in the bounding box (center=%r, size=%f).' % (center, bbox_size))
protein_dict['element'] = torch.LongTensor(protein_dict['element'])
protein_dict['pos'] = torch.stack(protein_dict['pos'], dim=0)
protein_dict['is_backbone'] = torch.BoolTensor(protein_dict['is_backbone'])
protein_dict['atom_to_aa_type'] = torch.LongTensor(protein_dict['atom_to_aa_type'])
data = ProteinLigandData.from_protein_ligand_dicts(
protein_dict = protein_dict,
ligand_dict = {
'element': torch.empty([0,], dtype=torch.long),
'pos': torch.empty([0, 3], dtype=torch.float),
'atom_feature': torch.empty([0, 8], dtype=torch.float),
'bond_index': torch.empty([2, 0], dtype=torch.long),
'bond_type': torch.empty([0,], dtype=torch.long),
}
)
return data
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--pdb_path', type=str,
default='./example/4yhj.pdb')
parser.add_argument('--mol_file', type=str,
default='./example/4yhj_ligand.sdf')
parser.add_argument('--num_atom', type=int,
default=29)
parser.add_argument('--keep_index', nargs='+', type=int)
parser.add_argument('-build_method', type=str, default='reconstruct',help='build or reconstruct')
parser.add_argument('--cuda', type=str, default=True)
parser.add_argument('--ckpt', type=str, help='path for loading the checkpoint')
parser.add_argument('--save_traj', action='store_true',
help='whether store the whole trajectory for sampling')
parser.add_argument('--resume', type=str, default=None)
parser.add_argument('--tag', type=str, default='')
parser.add_argument('--out_dir', type=str, default=None)
parser.add_argument('--num_samples', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--clip', type=float, default=1000.0)
parser.add_argument('--seed', type=int, default=3047)
parser.add_argument('--n_steps', type=int, default=0,
help='sampling num steps; for DSM framework, this means num steps for each noise scale')
parser.add_argument('--global_start_sigma', type=float, default=float('inf'),
help='enable global gradients only when noise is low') # float('inf')
parser.add_argument('--local_start_sigma', type=float, default=float('inf'),
help='enable local gradients only when noise is low')
parser.add_argument('--w_global_pos', type=float, default=1.0,
help='weight for global gradients')
parser.add_argument('--w_local_pos', type=float, default=1.0,
help='weight for local gradients')
parser.add_argument('--w_global_node', type=float, default=1.0,
help='weight for global gradients')
parser.add_argument('--w_local_node', type=float, default=1.0,
help='weight for local gradients')
# Parameters for DDPM
parser.add_argument('--sampling_type', type=str, default='generalized',
help='generalized, ddpm_noisy, ld: sampling method for DDIM, DDPM or Langevin Dynamics')
parser.add_argument('--eta', type=float, default=1.0,
help='weight for DDIM and DDPM: 0->DDIM, 1->DDPM')
args = parser.parse_args()
protein_root = os.path.dirname(args.pdb_path)
pdb_name = os.path.basename(args.pdb_path)[:4]
protein_filename = os.path.basename(args.pdb_path)
mol_file = args.mol_file
rmol = Chem.SDMolSupplier(mol_file)[0]
ckpt = torch.load(args.ckpt)
config = ckpt['config']
args.cuda = args.cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
seed_all(args.seed)
log_dir = os.path.join(os.path.dirname(os.path.dirname(args.ckpt)), 'custom_pdb')
if args.n_steps == 0:
args.n_steps = ckpt['config'].model.num_diffusion_timesteps
# Logging
# logger = get_logger('sample', log_dir)
tag = 'result'
output_dir = get_new_log_dir(log_dir, args.sampling_type+"_largest_mol_modify_"+tag, tag=args.tag)
logger = get_logger('test', output_dir)
logger.info(args)
logger.info(config)
pocket = False
logger.info('Loading {} data...'.format(config.dataset.name))
if config.dataset.name=='crossdock':
atomic_numbers = atomic_numbers_pocket
dataset_info = get_dataset_info('crossdock_pocket', False)
pocket=True
else:
if 'filter' in config.dataset.split:
atomic_numbers = P_ligand_element_filter
elif '100' in config.dataset.split:
atomic_numbers = P_ligand_element_100
else:
atomic_numbers = atomic_numbers_pdbind
histogram = dataset_info['n_nodes']
nodes_dist = DistributionNodes(histogram)
# # Transform
logger.info('Loading data...')
protein_featurizer = FeaturizeProteinAtom(config.dataset.name,pocket=pocket)
ligand_featurizer = FeaturizeLigandAtom(config.dataset.name,pocket=pocket)
transform = Compose([
LigandCountNeighbors(),
protein_featurizer,
ligand_featurizer,
CountNodesPerGraph(),
GetAdj(),
])
# # Data
data = pdb_to_pocket_data(args.pdb_path)
data = transform(data)
# Model
logger.info('Building model...')
logger.info(config.model['network'])
print(config.model)
model = get_model(config.model).to(device)
model.load_state_dict(ckpt['model'])
model.eval()
#sample
# gen_file_name = os.path.basename(args.pdb_path) + '_gen.sdf'
# print(gen_file_name)
save_sdf_flag=True
if save_sdf_flag:
sdf_dir = os.path.join(os.path.dirname(args.pdb_path),'frag_gen')
print('sdf idr:', sdf_dir)
os.makedirs(sdf_dir, exist_ok=True)
save_results=False
valid = 0
stable = 0
high_affinity=0.0
num_samples = args.num_samples
batch_size = args.batch_size
num_points = args.num_atom #random.randint(10,30)
context=None
smile_list = []
results = []
protein_files = []
sa_list = []
qed_list=[]
logP_list = []
Lipinski_list = []
vina_score_list = []
rd_vina_score_list = []
mol_list = []
start_linker = torchify_dict(parse_sdf_file(mol_file))
atomic_numbers = torch.LongTensor([1,6,7,8,9,15,16,17,34,119])
start_linker['linker_atom_type'] = start_linker['element'].view(-1, 1) == atomic_numbers.view(1, -1)
# important: define your own mask
# keep_index = torch.tensor([29,10,11])
keep_index = torch.tensor(args.keep_index)
start_linker['element'] = torch.index_select(start_linker['element'], 0, keep_index)
start_linker['atom_feature'] = torch.index_select(start_linker['atom_feature'], 0, keep_index)
start_linker['linker_atom_type'] = torch.index_select(start_linker['linker_atom_type'], 0, keep_index)
start_linker['pos'] = torch.index_select(start_linker['pos'], 0, keep_index)
protein_atom_feature = data.protein_atom_feature_full.float()
# if 'pocket' in args.ckpt:
# protein_atom_feature = data.protein_atom_feature.float()
protein_atom_feature_full = data.protein_atom_feature_full.float()
data_list,_ = construct_dataset_pocket(num_samples*1,batch_size,dataset_info,num_points,num_points,start_linker,None,
protein_atom_feature,protein_atom_feature_full,data.protein_pos,data.protein_bond_index)
for n, datas in enumerate(tqdm(data_list)):
batch = Batch.from_data_list(datas, follow_batch=FOLLOW_BATCH).to(device)
if num_samples==0:
break
with torch.no_grad():
try:
pos_gen, pos_gen_traj, atom_type, atom_traj = model.inpainting_sample(
ligand_atom_type=batch.ligand_atom_feature,
ligand_pos_init=batch.ligand_pos,
ligand_bond_index=batch.ligand_bond_index,
ligand_bond_type=None,
ligand_num_node=batch.ligand_num_node,
ligand_batch=batch.ligand_atom_feature_batch,
frag_mask = batch.frag_mask.type(torch.bool),
protein_atom_type = batch.protein_atom_feature_full,
protein_pos = batch.protein_pos,
protein_bond_index = batch.protein_bond_index,
protein_backbone_mask = None,
protein_batch = batch.protein_atom_feature_full_batch,
num_graphs=batch.num_graphs,
extend_order=False, # Done in transforms.
n_steps=args.n_steps,
step_lr=1e-6, #1e-6
w_global_pos=args.w_global_pos,
w_global_node=args.w_global_node,
w_local_pos=args.w_local_pos,
w_local_node=args.w_local_node,
global_start_sigma=args.global_start_sigma,
sampling_type=args.sampling_type,
eta=args.eta,
context=context
)
pos_list = unbatch(pos_gen, batch.ligand_atom_feature_batch)
atom_list = unbatch(atom_type, batch.ligand_atom_feature_batch)
# atom_charge_list = atom_charge.reshape(num_samples, -1, 1)
for m in range(batch_size):
try:
pos = pos_list[m].detach().cpu()
# pos = pos+torch.mean(data.protein_pos,0)
atom_type = atom_list[m].detach().cpu()
num_atom_type = len(atomic_numbers)-2 #
if args.build_method == 'reconstruct':
new_element = torch.tensor([atomic_numbers_crossdock[m] for m in torch.argmax(atom_type[:,:8],dim=1)])
indicators_elements = torch.argmax(atom_type[:,8:],dim=1)
indicators = torch.zeros([pos.size(0), len(ATOM_FAMILIES)], dtype=np.long)
for i, n in enumerate(indicators_elements):
indicators[i,n] = 1
gmol = reconstruct_from_generated(pos,new_element,indicators)
elif args.build_method == 'build':
new_element = torch.argmax(atom_type[:,:num_atom_type],dim=1)
gmol = make_mol_openbabel(pos, new_element, dataset_info)
# gen_mol = set_rdmol_positions(rdmol, data.ligand_pos)
g_smile = mol2smiles(gmol)
print("generated smile:", g_smile)
if g_smile is not None:
FINISHED = True
valid+=1
if '.' not in g_smile:
stable+=1
mol_frags = Chem.rdmolops.GetMolFrags(gmol, asMols=True)
largest_mol = max(mol_frags, default=gmol, key=lambda m: m.GetNumAtoms())
lg_smile = mol2smiles(largest_mol)
print("largest generated smile part:", lg_smile)
gmol = largest_mol
num_samples-=1
smile_list.append(g_smile)
# else:continue
else:
raise MolReconsError()
_, g_sa = compute_sa_score(gmol)
print("Generate SA score:", g_sa)
sa_list.append(g_sa)
g_qed = qed(gmol)
print("Generate QED score:", g_qed)
qed_list.append(g_qed)
if save_sdf_flag:
# print('save')
# gen_file_name = '{}_{}_{}.sdf'.format(str(g_vina_score), pdb_name, str(num_samples))
gen_file_name = '{}_{}.sdf'.format(pdb_name, str(num_samples))
print(gen_file_name) #str(g_vina_score)+"_"+
save_sdf(gmol, sdf_dir, gen_file_name)
if save_results:
# metrics = {'SA':g_sa,'QED':g_qed,'logP':g_logP,'Lipinski':g_Lipinski,'vina':g_vina_score}
result = {'atom_type':atom_type.detach().cpu(),
'pos':pos.detach().cpu(),
'smile':g_smile,
'mol':gmol,}
# 'metric_result':metrics}
results.append(result)
logger.info('Successfully generate molecule for {}, remining {} samples generated'.format(pdb_name, num_samples))
mol_list.append(gmol)
if num_samples==0:
break
except(MolReconsError,TypeError,IndexError,OverflowError):
print('Invalid,continue')
except (FloatingPointError): #,MolReconsError,TypeError,IndexError,OverflowError
clip_local = 20
logger.warning('Ignoring, because reconstruction error encountered or retrying with local clipping or vina error.')
print('Resample the number of the atoms and regenerate!')
logger.info('valid:%d'%valid)
logger.info('stable:%d'%stable)
logger.info('mean sa:%f'%mean(sa_list))
# logger.info('mean qed:%f'%mean(qed_list))
# logger.info('mean logP:%f'%mean(logP_list))
# logger.info('mean Lipinski:{}'.format(np.mean(Lipinski_list)))
# logger.info('diversity:%f'%calculate_diversity(mol_list))
# print(np.mean(Lipinski_list))
# logger.info('mean vina:%f'%mean(vina_score_list))
# logger.info('high affinity:%d'%high_affinity)
# print(vina_score_list)
# print(Lipinski_list)
if save_results:
save_path = os.path.join(os.path.dirname(args.pdb_path),'wo_semantic', args.savedir)
logger.info('Saving samples to: %s' % save_path)
with open(save_path, 'wb') as f:
pickle.dump(results, f)
f.close()