-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
327 lines (270 loc) · 10.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import torch
from torch import nn
import torch.nn.parallel
import torch.utils.data
from torch.autograd import Variable
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
class BasicConv2d_Ins(nn.Module):
'''
BasicConv2d module with InstanceNorm
'''
def __init__(self, in_planes, out_planes, kernal_size, stride, padding):
super(BasicConv2d_Ins, self).__init__()
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernal_size, stride=stride,
padding=padding, bias=False)
self.bn = nn.InstanceNorm2d(out_planes, eps=0.001, momentum=0.1, affine=True)
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x= self.relu(x)
return x
class block32_Ins(nn.Module):
def __init__(self, scale=1.0):
super(block32_Ins, self).__init__()
self.scale = scale
self.branch0 = nn.Sequential(BasicConv2d_Ins(64, 16, kernal_size=1, stride=1, padding=0))
self.branch1 = nn.Sequential(
BasicConv2d_Ins(64, 16, kernal_size=1, stride=1, padding=0),
BasicConv2d_Ins(16, 16, kernal_size=3, stride=1, padding=1)
)
self.branch2 = nn.Sequential(
BasicConv2d_Ins(64, 16, kernal_size=1, stride=1, padding=0),
BasicConv2d_Ins(16, 16, kernal_size=3, stride=1, padding=1),
BasicConv2d_Ins(16, 16, kernal_size=3, stride=1, padding=1)
)
self.conv2d = nn.Conv2d(48, 64, kernel_size=1, stride=1)
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
out = torch.cat((x0, x1, x2), 1)
out = self.conv2d(out)
out = out * self.scale + x
out = self.relu(out)
return out
class Encoder(nn.Module):
'''
encoder structure: Inception + Instance Normalization
'''
def __init__(self, GRAY=False):
super(Encoder, self).__init__()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)
if GRAY:
self.conv1 = nn.Sequential(BasicConv2d_Ins(1, 32, kernal_size=5, stride=1, padding=2))
else:
self.conv1 = nn.Sequential(BasicConv2d_Ins(3, 32, kernal_size=5, stride=1, padding=2))
self.conv2 = nn.Sequential(BasicConv2d_Ins(32, 64, kernal_size=5, stride=1, padding=2))
self.repeat = nn.Sequential(
block32_Ins(scale=0.17),
block32_Ins(scale=0.17),
block32_Ins(scale=0.17),
block32_Ins(scale=0.17)
)
self.conv3 = nn.Sequential(BasicConv2d_Ins(64, 128, kernal_size=5, stride=1, padding=2))
self.conv4 = nn.Sequential(BasicConv2d_Ins(128, 128, kernal_size=5, stride=1, padding=2))
def forward(self, x_in):
# in_chanx128x128 -> 32x128x128
self.conv1_out = self.conv1(x_in)
# 32x128x128 -> 32x64x64
self.ds1_out = self.maxpool(self.conv1_out)
# 32x64x64 -> 64x64x64
self.conv2_out = self.conv2(self.ds1_out)
# 64x64x64 -> 64x32x32
self.ds2_out = self.maxpool(self.conv2_out)
# 64x32x32 -> 64x32x32
self.incep_out = self.repeat(self.ds2_out)
# 64x32x32 -> 128x32x32
self.conv3_out = self.conv3(self.incep_out)
# 128x32x32 -> 128x16x16
self.ds3_out = self.maxpool(self.conv3_out)
# 128x16x16 -> 128x16x16
self.conv4_out = self.conv4(self.ds3_out)
# 128x16x16 -> 128x8x8
self.ds4_out = self.maxpool(self.conv4_out)
return self.ds4_out
class fc_layer(nn.Module):
def __init__(self, par=None, p=0.5, cls_num=10575):
super(fc_layer, self).__init__()
# activation function
self.act = nn.ReLU()
# network structure
self.fc1 = nn.Linear(8 * 8 * 128, 1024)
self.fc2 = nn.Linear(1024, 1024)
self.fc3 = nn.Linear(1024, cls_num)
self.dropout = nn.Dropout(p=p)
# parameters initiation
if par:
# to load pre-trained model
fc_dict = self.state_dict().copy()
fc_list = list(self.state_dict().keys())
fc_dict[fc_list[0]] = par['module.fc.weight']
fc_dict[fc_list[1]] = par['module.fc.bias']
# load pre-trained parameters into Encoder
self.load_state_dict(fc_dict)
else:
# initiate parameters
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0, 0.02)
elif isinstance(m, nn.ConvTranspose2d):
m.weight.data.normal_(0, 0.02)
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.02)
m.bias.data.fill_(0)
def forward(self, fea):
# fc1: bsx8x8x128 -> bsx8192 -> bsx1024
self.fc1_out = self.act(self.fc1(self.dropout(fea.view(fea.size(0), -1))))
# fc2: bsx1024 -> bsx1024
self.fc2_out = self.act(self.fc2(self.dropout(self.fc1_out)))
# fc3: bsx1024 -> bsxcls_num
self.fc3_out = self.fc3(self.fc2_out)
return self.fc3_out
class resblock(nn.Module):
'''
residual block
'''
def __init__(self, n_chan):
super(resblock, self).__init__()
self.infer = nn.Sequential(*[
nn.Conv2d(n_chan, n_chan, 3, 1, 1),
nn.ReLU()
])
def forward(self, x_in):
self.res_out = x_in + self.infer(x_in)
return self.res_out
class decoder(nn.Module):
def __init__(self, Nz=100, Nb=3, Nc=128, GRAY=False):
'''
decoder to generate an image
:param Nz: dimension of noises
:param Nb: number of blocks
:param Nc: channel number
'''
super(decoder, self).__init__()
self.Nz = Nz
# embedding layer
self.emb1 = nn.Sequential(*[
nn.Conv2d(128*2 + Nz, Nc, 3, 1, 1),
nn.ReLU(),
])
self.emb2 = self._make_layer(resblock, Nb, Nc)
# decoding layers
self.us1 = nn.Sequential(*[
nn.ConvTranspose2d(Nc, 512, 4, 2, 1, bias=False),
nn.InstanceNorm2d(512),
nn.ReLU(True),
])
self.us2 = nn.Sequential(*[
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False),
nn.InstanceNorm2d(256),
nn.ReLU(True),
])
self.us3 = nn.Sequential(*[
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
nn.InstanceNorm2d(128),
nn.ReLU(True),
])
self.us4 = nn.Sequential(*[
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False),
nn.InstanceNorm2d(64),
nn.ReLU(True),
])
if GRAY:
self.us5 = nn.Sequential(*[
nn.ConvTranspose2d(64, 1, 3, 1, 1, bias=False),
nn.Sigmoid()
])
else:
self.us5 = nn.Sequential(*[
nn.ConvTranspose2d(64, 3, 3, 1, 1, bias=False),
nn.Sigmoid()
])
def _make_layer(self, block, num_blocks, n_chan):
layers = []
for i in range(0, num_blocks):
layers.append(block(n_chan))
return nn.Sequential(*layers)
def forward(self, enc_FR, enc_ER, noise=None, device=None):
# features of the branch
fea_ER = enc_ER.ds4_out
fea_FR = enc_FR.ds4_out
# concatenate the inputs with noises
if noise is not None:
noise = noise
else:
noise = Variable(torch.rand(fea_ER.shape[0], self.Nz, 8, 8))
if device is not None:
noise = noise.to(device)
if self.Nz == 0:
emb_in = torch.cat((fea_ER, fea_FR), dim=1)
else:
emb_in = torch.cat((fea_ER, fea_FR, noise), dim=1)
# embedding: bsx(256+Nz)x8x8 -> bsxNcx8x8
self.emb1_out = self.emb1(emb_in)
# bsxNcx8x8 -> bsxNcx8x8
self.emb2_out = self.emb2(self.emb1_out)
# decoding:
# bsxNcx8x8 -> bsx512x16x16
self.us1_out = self.us1(self.emb2_out)
# bsx512x16x16 -> bsx256x32x32
self.us2_out = self.us2(self.us1_out)
# bsx256x32x32 -> bsx128x64x64
self.us3_out = self.us3(self.us2_out)
# bsx128x64x64 -> bsx64x128x128
self.us4_out = self.us4(self.us3_out)
# bsx64x128x128 -> bsxout_chanx128x128
self.img = self.us5(self.us4_out)
return self.img
class Dis(nn.Module):
'''
the class of discriminator to handle classification
'''
def __init__(self, fc=None, GRAY=True, cls_num=6):
super(Dis, self).__init__()
# initiate encoder
self.enc = Encoder(GRAY=GRAY)
# initiate fc layer
self.fc = fc_layer(cls_num=cls_num)
def forward(self, x_in):
self.fea = self.enc(x_in)
self.result = self.fc(self.fea)
return self.fea, self.result
class Gen(nn.Module):
'''
the class of generator
'''
def __init__(self, clsn_ER=7, Nz=100, Nb=3, GRAY=False):
super(Gen, self).__init__()
# encoders for the two branches
self.enc_FR = Encoder(GRAY=GRAY)
self.enc_ER = Encoder(GRAY=GRAY)
# Expression Classification Module (M_ER)
self.fc_ER = fc_layer(cls_num=clsn_ER)
# decoder in generator
self.dec = decoder(Nz=Nz, GRAY=GRAY, Nb=Nb)
self.dec.apply(weights_init)
def infer_FR(self, x_FR):
fea_FR = self.enc_FR(x_FR)
return fea_FR
def infer_ER(self, x_ER):
fea_ER = self.enc_ER(x_ER)
result_ER = self.fc_ER(fea_ER)
return fea_ER, result_ER
def gen_img(self, x_FR, x_ER, noise=None, device=None):
self.fea_FR = self.infer_FR(x_FR=x_FR)
self.fea_ER, self.result_ER = self.infer_ER(x_ER=x_ER)
self.img = self.dec(enc_FR=self.enc_FR, enc_ER=self.enc_ER, noise=noise, device=device)
return self.img
def gen_img_withfea(self, fea_FR, fea_ER):
self.enc_FR.ds4_out = fea_FR
self.enc_ER.ds4_out = fea_ER
self.img = self.dec(enc_FR=self.FR, enc_ER=self.enc_ER)
return self.img