forked from openmc-dev/openmc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsecondary_kalbach.cpp
241 lines (206 loc) · 7.07 KB
/
secondary_kalbach.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#include "openmc/secondary_kalbach.h"
#include <algorithm> // for copy, move
#include <cmath> // for log, sqrt, sinh
#include <cstddef> // for size_t
#include <iterator> // for back_inserter
#include "xtensor/xarray.hpp"
#include "xtensor/xview.hpp"
#include "openmc/hdf5_interface.h"
#include "openmc/random_dist.h"
#include "openmc/random_lcg.h"
#include "openmc/search.h"
#include "openmc/vector.h"
namespace openmc {
//==============================================================================
//! KalbachMann implementation
//==============================================================================
KalbachMann::KalbachMann(hid_t group)
{
// Open incoming energy dataset
hid_t dset = open_dataset(group, "energy");
// Get interpolation parameters
xt::xarray<int> temp;
read_attribute(dset, "interpolation", temp);
auto temp_b = xt::view(temp, 0); // view of breakpoints
auto temp_i = xt::view(temp, 1); // view of interpolation parameters
std::copy(temp_b.begin(), temp_b.end(), std::back_inserter(breakpoints_));
for (const auto i : temp_i)
interpolation_.push_back(int2interp(i));
n_region_ = breakpoints_.size();
// Get incoming energies
read_dataset(dset, energy_);
std::size_t n_energy = energy_.size();
close_dataset(dset);
// Get outgoing energy distribution data
dset = open_dataset(group, "distribution");
vector<int> offsets;
vector<int> interp;
vector<int> n_discrete;
read_attribute(dset, "offsets", offsets);
read_attribute(dset, "interpolation", interp);
read_attribute(dset, "n_discrete_lines", n_discrete);
xt::xarray<double> eout;
read_dataset(dset, eout);
close_dataset(dset);
for (int i = 0; i < n_energy; ++i) {
// Determine number of outgoing energies
int j = offsets[i];
int n;
if (i < n_energy - 1) {
n = offsets[i + 1] - j;
} else {
n = eout.shape()[1] - j;
}
// Assign interpolation scheme and number of discrete lines
KMTable d;
d.interpolation = int2interp(interp[i]);
d.n_discrete = n_discrete[i];
// Copy data
d.e_out = xt::view(eout, 0, xt::range(j, j + n));
d.p = xt::view(eout, 1, xt::range(j, j + n));
d.c = xt::view(eout, 2, xt::range(j, j + n));
d.r = xt::view(eout, 3, xt::range(j, j + n));
d.a = xt::view(eout, 4, xt::range(j, j + n));
// To get answers that match ACE data, for now we still use the tabulated
// CDF values that were passed through to the HDF5 library. At a later
// time, we can remove the CDF values from the HDF5 library and
// reconstruct them using the PDF
if (false) {
// Calculate cumulative distribution function -- discrete portion
for (int k = 0; k < d.n_discrete; ++k) {
if (k == 0) {
d.c[k] = d.p[k];
} else {
d.c[k] = d.c[k - 1] + d.p[k];
}
}
// Continuous portion
for (int k = d.n_discrete; k < n; ++k) {
if (k == d.n_discrete) {
d.c[k] = d.c[k - 1] + d.p[k];
} else {
if (d.interpolation == Interpolation::histogram) {
d.c[k] = d.c[k - 1] + d.p[k - 1] * (d.e_out[k] - d.e_out[k - 1]);
} else if (d.interpolation == Interpolation::lin_lin) {
d.c[k] = d.c[k - 1] + 0.5 * (d.p[k - 1] + d.p[k]) *
(d.e_out[k] - d.e_out[k - 1]);
}
}
}
// Normalize density and distribution functions
d.p /= d.c[n - 1];
d.c /= d.c[n - 1];
}
distribution_.push_back(std::move(d));
} // incoming energies
}
void KalbachMann::sample(
double E_in, double& E_out, double& mu, uint64_t* seed) const
{
// Find energy bin and calculate interpolation factor -- if the energy is
// outside the range of the tabulated energies, choose the first or last bins
auto n_energy_in = energy_.size();
int i;
double r;
if (E_in < energy_[0]) {
i = 0;
r = 0.0;
} else if (E_in > energy_[n_energy_in - 1]) {
i = n_energy_in - 2;
r = 1.0;
} else {
i = lower_bound_index(energy_.begin(), energy_.end(), E_in);
r = (E_in - energy_[i]) / (energy_[i + 1] - energy_[i]);
}
// Sample between the ith and [i+1]th bin
int l = r > prn(seed) ? i + 1 : i;
// Interpolation for energy E1 and EK
int n_energy_out = distribution_[i].e_out.size();
int n_discrete = distribution_[i].n_discrete;
double E_i_1 = distribution_[i].e_out[n_discrete];
double E_i_K = distribution_[i].e_out[n_energy_out - 1];
n_energy_out = distribution_[i + 1].e_out.size();
n_discrete = distribution_[i + 1].n_discrete;
double E_i1_1 = distribution_[i + 1].e_out[n_discrete];
double E_i1_K = distribution_[i + 1].e_out[n_energy_out - 1];
double E_1 = E_i_1 + r * (E_i1_1 - E_i_1);
double E_K = E_i_K + r * (E_i1_K - E_i_K);
// Determine outgoing energy bin
n_energy_out = distribution_[l].e_out.size();
n_discrete = distribution_[l].n_discrete;
double r1 = prn(seed);
double c_k = distribution_[l].c[0];
int k = 0;
int end = n_energy_out - 2;
// Discrete portion
for (int j = 0; j < n_discrete; ++j) {
k = j;
c_k = distribution_[l].c[k];
if (r1 < c_k) {
end = j;
break;
}
}
// Continuous portion
double c_k1;
for (int j = n_discrete; j < end; ++j) {
k = j;
c_k1 = distribution_[l].c[k + 1];
if (r1 < c_k1)
break;
k = j + 1;
c_k = c_k1;
}
double E_l_k = distribution_[l].e_out[k];
double p_l_k = distribution_[l].p[k];
double km_r, km_a;
if (distribution_[l].interpolation == Interpolation::histogram) {
// Histogram interpolation
if (p_l_k > 0.0 && k >= n_discrete) {
E_out = E_l_k + (r1 - c_k) / p_l_k;
} else {
E_out = E_l_k;
}
// Determine Kalbach-Mann parameters
km_r = distribution_[l].r[k];
km_a = distribution_[l].a[k];
} else {
// Linear-linear interpolation
double E_l_k1 = distribution_[l].e_out[k + 1];
double p_l_k1 = distribution_[l].p[k + 1];
double frac = (p_l_k1 - p_l_k) / (E_l_k1 - E_l_k);
if (frac == 0.0) {
E_out = E_l_k + (r1 - c_k) / p_l_k;
} else {
E_out =
E_l_k +
(std::sqrt(std::max(0.0, p_l_k * p_l_k + 2.0 * frac * (r1 - c_k))) -
p_l_k) /
frac;
}
// Determine Kalbach-Mann parameters
km_r = distribution_[l].r[k] +
(E_out - E_l_k) / (E_l_k1 - E_l_k) *
(distribution_[l].r[k + 1] - distribution_[l].r[k]);
km_a = distribution_[l].a[k] +
(E_out - E_l_k) / (E_l_k1 - E_l_k) *
(distribution_[l].a[k + 1] - distribution_[l].a[k]);
}
// Now interpolate between incident energy bins i and i + 1
if (k >= n_discrete) {
if (l == i) {
E_out = E_1 + (E_out - E_i_1) * (E_K - E_1) / (E_i_K - E_i_1);
} else {
E_out = E_1 + (E_out - E_i1_1) * (E_K - E_1) / (E_i1_K - E_i1_1);
}
}
// Sampled correlated angle from Kalbach-Mann parameters
if (prn(seed) > km_r) {
double T = uniform_distribution(-1., 1., seed) * std::sinh(km_a);
mu = std::log(T + std::sqrt(T * T + 1.0)) / km_a;
} else {
double r1 = prn(seed);
mu = std::log(r1 * std::exp(km_a) + (1.0 - r1) * std::exp(-km_a)) / km_a;
}
}
} // namespace openmc