-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
644 lines (570 loc) · 32.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import sys
"""
note that in test time, test_num_updates=10 means output is 1(original loss)+10(sghmc_num_updates)+10(num_updates) dimensions;
"""
import csv
import numpy as np
import pickle
import random
import tensorflow as tf
tf.compat.v1.disable_v2_behavior()
# tf.get_logger().setLevel('ERROR')
from data_generator import DataGenerator
from model import IPML
from tensorflow.python.platform import flags
from copy import deepcopy
FLAGS = flags.FLAGS
## Dataset/method options
flags.DEFINE_string('datasource', 'sinusoid', 'sinusoid or omniglot or miniimagenet')
flags.DEFINE_integer('num_classes', 5, 'number of classes used in classification (e.g. 5-way classification).')
# oracle means task id is input (only suitable for sinusoid)
flags.DEFINE_string('baseline', None, 'oracle, or None')
## Training options
flags.DEFINE_integer('pretrain_iterations', 0, 'number of pre-training iterations.')
flags.DEFINE_integer('metatrain_iterations', 15000, 'number of metatraining iterations.') # 15k for omniglot, 50k for sinusoid
flags.DEFINE_integer('meta_batch_size', 10, 'number of tasks sampled per meta-update')
flags.DEFINE_float('meta_lr', 0.001, 'the base learning rate of the generator')
flags.DEFINE_integer('update_batch_size', 5, 'number of examples used for inner gradient update (K for K-shot learning).')
flags.DEFINE_float('update_lr', 1e-3, 'step size alpha for inner gradient update.') # 0.1 for omniglot
flags.DEFINE_integer('num_updates', 1, 'number of inner gradient updates during training.')
## SGHMC Sampler
flags.DEFINE_integer('sghmc_num_burnin', 0, 'number of sghmc gradient updates during training.')
flags.DEFINE_integer('sghmc_num_sample', 5, 'number of sghmc gradient updates during training.')
flags.DEFINE_integer('sghmc_num_updates', 5, 'number of sghmc gradient updates during training.') # must equal to sghmc_num_burnin + sghmc_num_sample
flags.DEFINE_float('epsilon', 3e-2, 'step size of sampler, epsilon ** 2 approx update_lr.') #
flags.DEFINE_float('mdecay', 1.0, 'sampler hyper.') #
flags.DEFINE_float('prior_constant', 1e-4, 'prior hyper.') #
## Model options
flags.DEFINE_string('norm', 'batch_norm', 'batch_norm, layer_norm, or None')
flags.DEFINE_integer('num_filters', 64, 'number of filters for conv nets -- 32 for miniimagenet, 64 for omiglot.')
flags.DEFINE_bool('conv', True, 'whether or not to use a convolutional network, only applicable in some cases')
flags.DEFINE_bool('max_pool', False, 'Whether or not to use max pooling rather than strided convolutions')
flags.DEFINE_bool('stop_grad', True, 'if True, do not use second derivatives in meta-optimization (as ipml does need to use)')
flags.DEFINE_bool('clip_z_grad', True, 'if True, clip grad in sghmc step')
flags.DEFINE_bool('clip_maml_grad', False, 'if True, clip grad in maml step')
flags.DEFINE_bool('get_z_samples', False, 'if True, get_z_samples')
## Logging, saving, and testing options
flags.DEFINE_bool('log', True, 'if false, do not log summaries, for debugging code.')
flags.DEFINE_string('logdir', '/tmp/data', 'directory for summaries and checkpoints.')
flags.DEFINE_bool('resume', True, 'resume training if there is a model available')
flags.DEFINE_bool('train', True, 'True to train, False to test.')
flags.DEFINE_integer('test_iter', -1, 'iteration to load model (-1 for latest model)')
flags.DEFINE_bool('test_set', False, 'Set to true to test on the the test set, False for the validation set.')
flags.DEFINE_integer('train_update_batch_size', -1, 'number of examples used for gradient update during training (use if you want to test with a different number).')
flags.DEFINE_float('train_update_lr', -1, 'value of inner gradient step step during training. (use if you want to test with a different value)') # 0.1 for omniglot
flags.DEFINE_integer('num_tasks', 20, 'number of batch tasks in total.')
flags.DEFINE_integer('num_select', 10, 'number of batch tasks selected in active task selection.')
flags.DEFINE_string('mode', 'MILT', 'criterion')
flags.DEFINE_bool('backward', True, 'if false, no model_backward.')
def active_task_selection_and_train(model, model_backward, saver, sess, exp_string, data_generator, mode='MILT', resume_itr=0):
SUMMARY_INTERVAL = 100
SAVE_INTERVAL = 1000
if FLAGS.datasource == 'sinusoid':
PRINT_INTERVAL = SUMMARY_INTERVAL
TEST_PRINT_INTERVAL = PRINT_INTERVAL*5
else:
PRINT_INTERVAL = SUMMARY_INTERVAL
TEST_PRINT_INTERVAL = PRINT_INTERVAL*2
if FLAGS.log:
train_writer = tf.summary.FileWriter(FLAGS.logdir + '/' + exp_string, sess.graph)
print('====> Done initializing, start task selection. Total {} tasks, {} to select.'.format(FLAGS.num_tasks,FLAGS.num_select))
print('====> Selection criterion: ' + mode)
if mode == 'MILT':
""" First training the model_backward """
print('----> Start training the backward model.')
num_classes = data_generator.num_classes # for classification, 1 otherwise
for itr in range(FLAGS.num_tasks):
feed_dict = {}
if 'generate' in dir(data_generator):
batch_x, batch_y, amp, phase = data_generator.data_pool[itr]
if FLAGS.baseline == 'oracle':
batch_x = np.concatenate([batch_x, np.zeros([batch_x.shape[0], batch_x.shape[1], 2])], 2)
for i in range(FLAGS.meta_batch_size):
batch_x[i, :, 1] = amp[i]
batch_x[i, :, 2] = phase[i]
else:
batch_x, batch_y = data_generator.data_pool[itr]
inputa = batch_x[:, :num_classes*FLAGS.update_batch_size, :]
labela = batch_y[:, :num_classes*FLAGS.update_batch_size, :]
inputb = inputa # for training the backward model only
labelb = labela
feed_dict = {model.inputa: inputa, model.inputb: inputb, model.labela: labela, model.labelb: labelb,
model_backward.inputa: inputa, model_backward.inputb: inputb, model_backward.labela: labela, model_backward.labelb: labelb}
input_tensors = [model_backward.learning_op] # perform (continue) learning
result = sess.run(input_tensors, feed_dict)
print('----> Finish training the backward model.')
""" Start active learning, along with online learning and unlearning for computing the MILT criterion. """
data_generator.selected_data_pool = []
selected_indices = []
for itr in range(FLAGS.num_select):
criterion = []
for i_s in range(FLAGS.num_tasks):
if i_s in selected_indices:
criterion.append(-999)
continue
feed_dict = {}
if 'generate' in dir(data_generator):
batch_x, batch_y, amp, phase = data_generator.data_pool[i_s]
if FLAGS.baseline == 'oracle':
batch_x = np.concatenate([batch_x, np.zeros([batch_x.shape[0], batch_x.shape[1], 2])], 2)
for i in range(FLAGS.meta_batch_size):
batch_x[i, :, 1] = amp[i]
batch_x[i, :, 2] = phase[i]
else:
batch_x, batch_y = data_generator.data_pool[i_s]
inputa = batch_x[:, :num_classes*FLAGS.update_batch_size, :]
labela = batch_y[:, :num_classes*FLAGS.update_batch_size, :]
inputb = inputa
labelb = labela
feed_dict = {model.inputa: inputa, model.inputb: inputb, model.labela: labela, model.labelb: labelb,
model_backward.inputa: inputa, model_backward.inputb: inputb, model_backward.labela: labela, model_backward.labelb: labelb}
""" for the model """
input_tensors = [model.Z_samples]
result = sess.run(input_tensors, feed_dict)
""" for the backward model """
input_tensors = [model_backward.unlearning_op]
sess.run(input_tensors, feed_dict)
input_tensors = [model_backward.Z_samples]
result_backward = sess.run(input_tensors, feed_dict)
input_tensors = [model_backward.learning_op]
sess.run(input_tensors, feed_dict)
MILT = np.log(np.sum(np.std(result,axis=1)+1e-7)) - np.log(np.sum(np.std(result_backward,axis=1)+1e-7))
criterion.append(MILT)
print("----> Selecting task. Round ",itr)
print("Criterion:",criterion)
max_MILT = max(criterion)
for i_s in range(FLAGS.num_tasks):
if criterion[i_s] == max_MILT:
data_generator.selected_data_pool.append(data_generator.data_pool[i_s])
selected_indices.append(i_s)
break
feed_dict = {}
if 'generate' in dir(data_generator):
batch_x, batch_y, amp, phase = data_generator.selected_data_pool[-1]
if FLAGS.baseline == 'oracle':
batch_x = np.concatenate([batch_x, np.zeros([batch_x.shape[0], batch_x.shape[1], 2])], 2)
for i in range(FLAGS.meta_batch_size):
batch_x[i, :, 1] = amp[i]
batch_x[i, :, 2] = phase[i]
else:
batch_x, batch_y = data_generator.selected_data_pool[-1]
inputa = batch_x[:, :num_classes*FLAGS.update_batch_size, :]
labela = batch_y[:, :num_classes*FLAGS.update_batch_size, :]
inputb = inputa
labelb = labela
feed_dict = {model.inputa: inputa, model.inputb: inputb, model.labela: labela, model.labelb: labelb,
model_backward.inputa: inputa, model_backward.inputb: inputb, model_backward.labela: labela, model_backward.labelb: labelb}
""" for the model """
input_tensors = [model.learning_op]
sess.run(input_tensors, feed_dict)
""" for the backward model """
input_tensors = [model_backward.unlearning_op]
sess.run(input_tensors, feed_dict)
elif mode=='Var':
""" Start active learning, along with online learning and unlearning for computing the Variance criterion. """
num_classes = data_generator.num_classes # for classification, 1 otherwise
data_generator.selected_data_pool = []
selected_indices = []
for itr in range(FLAGS.num_select):
criterion = []
for i_s in range(FLAGS.num_tasks):
if i_s in selected_indices:
criterion.append(-999)
continue
feed_dict = {}
if 'generate' in dir(data_generator):
batch_x, batch_y, amp, phase = data_generator.data_pool[i_s]
if FLAGS.baseline == 'oracle':
batch_x = np.concatenate([batch_x, np.zeros([batch_x.shape[0], batch_x.shape[1], 2])], 2)
for i in range(FLAGS.meta_batch_size):
batch_x[i, :, 1] = amp[i]
batch_x[i, :, 2] = phase[i]
else:
batch_x, batch_y = data_generator.data_pool[i_s]
inputa = batch_x[:, :num_classes*FLAGS.update_batch_size, :]
labela = batch_y[:, :num_classes*FLAGS.update_batch_size, :]
inputb = inputa # b used for testing
labelb = labela
feed_dict = {model.inputa: inputa, model.inputb: inputb, model.labela: labela, model.labelb: labelb,
model_backward.inputa: inputa, model_backward.inputb: inputb, model_backward.labela: labela, model_backward.labelb: labelb}
""" for the model """
input_tensors = [model.Z_samples]
result = sess.run(input_tensors, feed_dict)
Var = np.sum(np.std(result,axis=1))
criterion.append(Var)
print("----> Selecting task. Round ",itr)
print("Criterion:",criterion)
max_Var = max(criterion)
for i_s in range(FLAGS.num_tasks):
if criterion[i_s] == max_Var:
data_generator.selected_data_pool.append(data_generator.data_pool[i_s])
selected_indices.append(i_s)
break
feed_dict = {}
if 'generate' in dir(data_generator):
batch_x, batch_y, amp, phase = data_generator.selected_data_pool[-1]
if FLAGS.baseline == 'oracle':
batch_x = np.concatenate([batch_x, np.zeros([batch_x.shape[0], batch_x.shape[1], 2])], 2)
for i in range(FLAGS.meta_batch_size):
batch_x[i, :, 1] = amp[i]
batch_x[i, :, 2] = phase[i]
else:
batch_x, batch_y = data_generator.selected_data_pool[-1]
inputa = batch_x[:, :num_classes*FLAGS.update_batch_size, :]
labela = batch_y[:, :num_classes*FLAGS.update_batch_size, :]
inputb = batch_x[:, num_classes*FLAGS.update_batch_size:, :] # b used for testing
labelb = batch_y[:, num_classes*FLAGS.update_batch_size:, :]
feed_dict = {model.inputa: inputa, model.inputb: inputb, model.labela: labela, model.labelb: labelb,
model_backward.inputa: inputa, model_backward.inputb: inputb, model_backward.labela: labela, model_backward.labelb: labelb}
""" for the model """
input_tensors = [model.learning_op]
sess.run(input_tensors, feed_dict)
elif mode=='ELT':
""" Start active learning, along with online learning and unlearning for computing the ELT criterion. """
num_classes = data_generator.num_classes # for classification, 1 otherwise
data_generator.selected_data_pool = []
selected_indices = []
for itr in range(FLAGS.num_select):
criterion = []
for i_s in range(FLAGS.num_tasks):
if i_s in selected_indices:
criterion.append(-999)
continue
feed_dict = {}
if 'generate' in dir(data_generator):
batch_x, batch_y, amp, phase = data_generator.data_pool[i_s]
if FLAGS.baseline == 'oracle':
batch_x = np.concatenate([batch_x, np.zeros([batch_x.shape[0], batch_x.shape[1], 2])], 2)
for i in range(FLAGS.meta_batch_size):
batch_x[i, :, 1] = amp[i]
batch_x[i, :, 2] = phase[i]
else:
batch_x, batch_y = data_generator.data_pool[i_s]
inputa = batch_x[:, :num_classes*FLAGS.update_batch_size, :]
labela = batch_y[:, :num_classes*FLAGS.update_batch_size, :]
inputb = inputa # b used for testing
labelb = labela
feed_dict = {model.inputa: inputa, model.inputb: inputb, model.labela: labela, model.labelb: labelb,
model_backward.inputa: inputa, model_backward.inputb: inputb, model_backward.labela: labela, model_backward.labelb: labelb}
""" for the model """
input_tensors = [model.Z_samples]
result = sess.run(input_tensors, feed_dict)
LE = np.log(np.sum(np.std(result,axis=1)+1e-7))
criterion.append(LE)
print("----> Selecting task. Round ",itr)
print("Criterion:",criterion)
max_LE = max(criterion)
for i_s in range(FLAGS.num_tasks):
if criterion[i_s] == max_LE:
data_generator.selected_data_pool.append(data_generator.data_pool[i_s])
selected_indices.append(i_s)
break
feed_dict = {}
if 'generate' in dir(data_generator):
batch_x, batch_y, amp, phase = data_generator.selected_data_pool[-1]
if FLAGS.baseline == 'oracle':
batch_x = np.concatenate([batch_x, np.zeros([batch_x.shape[0], batch_x.shape[1], 2])], 2)
for i in range(FLAGS.meta_batch_size):
batch_x[i, :, 1] = amp[i]
batch_x[i, :, 2] = phase[i]
else:
batch_x, batch_y = data_generator.selected_data_pool[-1]
inputa = batch_x[:, :num_classes*FLAGS.update_batch_size, :]
labela = batch_y[:, :num_classes*FLAGS.update_batch_size, :]
inputb = inputa
labelb = labela
feed_dict = {model.inputa: inputa, model.inputb: inputb, model.labela: labela, model.labelb: labelb,
model_backward.inputa: inputa, model_backward.inputb: inputb, model_backward.labela: labela, model_backward.labelb: labelb}
""" for the model """
input_tensors = [model.learning_op]
sess.run(input_tensors, feed_dict)
elif mode=='Rand':
data_generator.selected_data_pool = []
for i_s in range(FLAGS.num_select):
data_generator.selected_data_pool.append(data_generator.data_pool[i_s])
else:
raise ValueError("Unrecognized criterion.")
saver.save(sess, FLAGS.logdir + '/' + exp_string + '/pre_model' + str(-1))
#####################################################################################################################
#####################################################################################################################
#####################################################################################################################
print('====> Done task selection, start training.')
prelosses, zlosses, postlosses = [], [], []
num_classes = data_generator.num_classes # for classification, 1 otherwise
multitask_weights, reg_weights = [], []
for itr in range(resume_itr, FLAGS.metatrain_iterations):
feed_dict = {}
if 'generate' in dir(data_generator):
batch_x, batch_y, amp, phase = data_generator.selected_data_pool[itr % FLAGS.num_select]
if FLAGS.baseline == 'oracle':
batch_x = np.concatenate([batch_x, np.zeros([batch_x.shape[0], batch_x.shape[1], 2])], 2)
for i in range(FLAGS.meta_batch_size):
batch_x[i, :, 1] = amp[i]
batch_x[i, :, 2] = phase[i]
else:
batch_x, batch_y = data_generator.selected_data_pool[itr % FLAGS.num_select]
inputa = batch_x[:, :num_classes*FLAGS.update_batch_size, :]
labela = batch_y[:, :num_classes*FLAGS.update_batch_size, :]
inputb = batch_x[:, num_classes*FLAGS.update_batch_size:, :] # b used for testing
labelb = batch_y[:, num_classes*FLAGS.update_batch_size:, :]
feed_dict = {model.inputa: inputa, model.inputb: inputb, model.labela: labela, model.labelb: labelb,
model_backward.inputa: inputa, model_backward.inputb: inputb, model_backward.labela: labela, model_backward.labelb: labelb}
input_tensors = [model.metatrain_op]
if (itr % SUMMARY_INTERVAL == 0 or itr % PRINT_INTERVAL == 0):
input_tensors.extend([model.summ_op, model.total_loss1,
model.total_losses2[FLAGS.sghmc_num_updates-1],
model.total_losses3[FLAGS.num_updates-1]])
if model.classification:
input_tensors.extend([model.total_accuracy1,
model.total_accuracies2[FLAGS.sghmc_num_updates-1],
model.total_accuracies3[FLAGS.num_updates-1]])
if FLAGS.get_z_samples and itr % SAVE_INTERVAL == 0:
input_tensors.extend([model.Z_samples])
holder = 1
else:
holder = 0
result = sess.run(input_tensors, feed_dict)
if itr % SUMMARY_INTERVAL == 0:
prelosses.append(result[-3-holder])
if FLAGS.log:
train_writer.add_summary(result[1], itr)
zlosses.append(result[-2-holder])
postlosses.append(result[-1-holder])
if itr % PRINT_INTERVAL == 0:
if itr < FLAGS.pretrain_iterations:
print_str = 'Pretrain Iteration ' + str(itr)
else:
print_str = 'Iteration ' + str(itr - FLAGS.pretrain_iterations)
print_str += ': ' + str(np.mean(prelosses)) + ', ' + str(np.mean(zlosses)) + ', ' + str(np.mean(postlosses))
print(print_str)
prelosses, zlosses, postlosses = [], [], []
if itr % SAVE_INTERVAL == 0:
saver.save(sess, FLAGS.logdir + '/' + exp_string + '/model' + str(itr))
# sinusoid is infinite data, so no need to test on meta-validation set.
if itr % TEST_PRINT_INTERVAL == 0:
if 'generate' not in dir(data_generator):
feed_dict = {}
val_length = len(data_generator.val_data_pool)
index = np.random.randint(val_length)
batch_x, batch_y = data_generator.val_data_pool[index]
inputa = batch_x[:, :num_classes*FLAGS.update_batch_size, :]
labela = batch_y[:, :num_classes*FLAGS.update_batch_size, :]
inputb = batch_x[:, num_classes*FLAGS.update_batch_size:, :] # b used for testing
labelb = batch_y[:, num_classes*FLAGS.update_batch_size:, :]
feed_dict = {model.inputa: inputa, model.inputb: inputb, model.labela: labela, model.labelb: labelb,
model_backward.inputa: inputa, model_backward.inputb: inputb, model_backward.labela: labela, model_backward.labelb: labelb}
if model.classification:
input_tensors = [model.metaval_total_accuracy1,
model.metaval_total_accuracies2[FLAGS.sghmc_num_updates-1],
model.metaval_total_accuracies3[FLAGS.num_updates-1], model.summ_op]
else:
input_tensors = [model.metaval_total_loss1,
model.metaval_total_losses2[FLAGS.sghmc_num_updates-1],
model.metaval_total_losses3[FLAGS.num_updates-1],
model.summ_op]
else:
batch_x, batch_y, amp, phase = data_generator.generate()
inputa = batch_x[:, :num_classes*FLAGS.update_batch_size, :]
inputb = batch_x[:, num_classes*FLAGS.update_batch_size:, :]
labela = batch_y[:, :num_classes*FLAGS.update_batch_size, :]
labelb = batch_y[:, num_classes*FLAGS.update_batch_size:, :]
feed_dict = {model.inputa: inputa, model.inputb: inputb, model.labela: labela, model.labelb: labelb, model.meta_lr: 0.0}
if model.classification:
input_tensors = [model.total_accuracy1,
model.total_accuracies2[FLAGS.sghmc_num_updates-1],
model.total_accuracies3[FLAGS.num_updates-1]]
else:
input_tensors = [model.total_loss1,
model.total_losses2[FLAGS.sghmc_num_updates-1],
model.total_losses3[FLAGS.num_updates-1]]
result = sess.run(input_tensors, feed_dict)
print('Validation results: ' + str(result[0]) + ', ' + str(result[1]) + ', ' + str(result[2]))
saver.save(sess, FLAGS.logdir + '/' + exp_string + '/model' + str(itr))
# calculated for omniglot
def test(model, saver, sess, exp_string, data_generator, test_num_updates=None):
num_classes = data_generator.num_classes # for classification, 1 otherwise
np.random.seed(1)
random.seed(1)
metaval_accuracies = []
NUM_TEST_POINTS = len(data_generator.val_data_pool)
NUM_TEST_POINTS = 1
for _ in range(NUM_TEST_POINTS):
feed_dict = {}
if 'generate' not in dir(data_generator):
batch_x, batch_y = data_generator.val_data_pool[_]
else:
batch_x, batch_y, amp, phase = data_generator.generate(train=False)
if FLAGS.baseline == 'oracle': # NOTE - this flag is specific to sinusoid
batch_x = np.concatenate([batch_x, np.zeros([batch_x.shape[0], batch_x.shape[1], 2])], 2)
batch_x[0, :, 1] = amp[0]
batch_x[0, :, 2] = phase[0]
inputa = batch_x[:, :num_classes*FLAGS.update_batch_size, :]
inputb = batch_x[:,num_classes*FLAGS.update_batch_size:, :]
labela = batch_y[:, :num_classes*FLAGS.update_batch_size, :]
labelb = batch_y[:,num_classes*FLAGS.update_batch_size:, :]
if _<=10:
print(inputa.shape,inputb.shape,labela.shape,labelb.shape)
print(np.sum(inputa),np.sum(inputb),np.sum(labela),np.sum(labelb))
feed_dict = {model.inputa: inputa, model.inputb: inputb, model.labela: labela, model.labelb: labelb, model.meta_lr: 0.0}
if model.classification:
result = sess.run([model.metaval_total_accuracy1] + model.metaval_total_accuracies2 + model.metaval_total_accuracies3, feed_dict)
else: # this is for sinusoid
# list_of losses = [model.total_loss1] + model.total_losses2 + + model.total_losses3
result = sess.run([model.total_loss1] + model.total_losses2 + model.total_losses3, feed_dict)
metaval_accuracies.append(result)
metaval_accuracies = np.array(metaval_accuracies)
means = np.mean(metaval_accuracies, 0)
stds = np.std(metaval_accuracies, 0)
ci95 = 1.96*stds/np.sqrt(NUM_TEST_POINTS)
print('Mean validation accuracy/loss, stddev, and confidence intervals')
print((means, stds, ci95))
out_filename = FLAGS.logdir +'/'+ exp_string + '/' + 'test_ubs' + str(FLAGS.update_batch_size) + '_stepsize' + str(FLAGS.update_lr) + '.csv'
out_pkl = FLAGS.logdir +'/'+ exp_string + '/' + 'test_ubs' + str(FLAGS.update_batch_size) + '_stepsize' + str(FLAGS.update_lr) + '.pkl'
with open(out_pkl, 'wb') as f:
pickle.dump({'mses': metaval_accuracies}, f)
with open(out_filename, 'w') as f:
writer = csv.writer(f, delimiter=',')
writer.writerow(['update'+str(i) for i in range(len(means))])
writer.writerow(means)
writer.writerow(stds)
writer.writerow(ci95)
def main():
log_path = FLAGS.datasource
if FLAGS.num_classes == 20:
log_path += '20way'
log_path += '_log/stdout' \
+ '_' + str(FLAGS.update_batch_size) \
+ '_' + str(FLAGS.meta_batch_size) \
+ '_' + str(FLAGS.num_tasks) \
+ '_' + str(FLAGS.num_select) \
+ '_' + FLAGS.mode + '.log'
logf = open(log_path, 'a')
sys.stdout = logf
sys.stderr = logf
main_seed1 = 11
random.seed(main_seed1)
if FLAGS.datasource == 'sinusoid':
if FLAGS.train:
test_num_updates = 5
else:
test_num_updates = 10
# test_num_updates = 5
print("[Tune]:test_num_updates=", test_num_updates)
else:
if FLAGS.datasource == 'miniimagenet':
if FLAGS.train == True:
test_num_updates = 1 # eval on at least one update during training
else:
test_num_updates = 10
else:
test_num_updates = 10
if FLAGS.train == False:
orig_meta_batch_size = FLAGS.meta_batch_size
# always use meta batch size of 1 when testing.
FLAGS.meta_batch_size = 1
if FLAGS.datasource == 'sinusoid':
data_generator = DataGenerator(FLAGS.num_tasks, FLAGS.update_batch_size*2, FLAGS.meta_batch_size)
else:
if FLAGS.metatrain_iterations == 0 and FLAGS.datasource == 'miniimagenet':
assert FLAGS.meta_batch_size == 1
assert FLAGS.update_batch_size == 1
data_generator = DataGenerator(FLAGS.num_tasks, 1, FLAGS.meta_batch_size) # only use one datapoint,
else:
if FLAGS.datasource == 'miniimagenet': # TODO - use 15 val examples for imagenet?
if FLAGS.train:
data_generator = DataGenerator(FLAGS.num_tasks, FLAGS.update_batch_size+15, FLAGS.meta_batch_size) # only use one datapoint for testing to save memory
else:
data_generator = DataGenerator(FLAGS.num_tasks, FLAGS.update_batch_size*2, FLAGS.meta_batch_size) # only use one datapoint for testing to save memory
else:
data_generator = DataGenerator(FLAGS.num_tasks, FLAGS.update_batch_size*2, FLAGS.meta_batch_size) # only use one datapoint for testing to save memory
dim_output = data_generator.dim_output
if FLAGS.baseline == 'oracle':
assert FLAGS.datasource == 'sinusoid'
dim_input = 3
FLAGS.pretrain_iterations += FLAGS.metatrain_iterations
FLAGS.metatrain_iterations = 0
else:
dim_input = data_generator.dim_input
if FLAGS.datasource == 'miniimagenet' or FLAGS.datasource == 'omniglot':
tf_data_load = True
num_classes = data_generator.num_classes
input_tensors = None
metaval_input_tensors = None
else:
tf_data_load = False
input_tensors = None
# note that here we use a single particle (M=1), where the results in the paper are obtained with M up to 5.
model = IPML(dim_input, dim_output, test_num_updates=test_num_updates)
if FLAGS.backward:
model_backward = IPML(dim_input, dim_output, test_num_updates=test_num_updates)
if FLAGS.train or not tf_data_load:
# with tf.variable_scope("forward"):
model.construct_model(input_tensors=input_tensors, prefix='metatrain_')
# with tf.variable_scope("backward"):
if FLAGS.backward:
model_backward.construct_model(input_tensors=input_tensors, prefix='metatrain_',name="R_")
if tf_data_load:
# with tf.variable_scope("forward"):
model.construct_model(input_tensors=metaval_input_tensors, prefix='metaval_')
# with tf.variable_scope("backward"):
if FLAGS.backward:
model_backward.construct_model(input_tensors=metaval_input_tensors, prefix='metaval_',name="R_")
model.summ_op = tf.summary.merge_all()
# model_backward.summ_op = tf.summary.merge_all()
saver = loader = tf.train.Saver(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES), max_to_keep=10)
sess = tf.InteractiveSession()
if FLAGS.train == False:
# change to original meta batch size when loading model.
FLAGS.meta_batch_size = orig_meta_batch_size
if FLAGS.train_update_batch_size == -1:
FLAGS.train_update_batch_size = FLAGS.update_batch_size
if FLAGS.train_update_lr == -1:
FLAGS.train_update_lr = FLAGS.update_lr
exp_string = 'cls_'+str(FLAGS.num_classes)+'.mbs_'+str(FLAGS.meta_batch_size) + '.ubs_' + str(FLAGS.train_update_batch_size) \
+ '.burnin' + str(FLAGS.sghmc_num_burnin) \
+ '.sample' + str(FLAGS.sghmc_num_sample) \
+ '.numstep' + str(FLAGS.num_updates) + '.updatelr' + str(FLAGS.train_update_lr) \
+ '.seed1' + str(main_seed1)
if FLAGS.num_filters != 64:
exp_string += 'hidden' + str(FLAGS.num_filters)
if FLAGS.max_pool:
exp_string += 'maxpool'
if FLAGS.stop_grad:
exp_string += 'stopgrad'
if FLAGS.baseline:
exp_string += FLAGS.baseline
if FLAGS.norm == 'batch_norm':
exp_string += 'batchnorm'
elif FLAGS.norm == 'layer_norm':
exp_string += 'layernorm'
elif FLAGS.norm == 'None':
exp_string += 'nonorm'
else:
print('Norm setting not recognized.')
exp_string = exp_string + '_' + str(FLAGS.update_batch_size) \
+ '_' + str(FLAGS.meta_batch_size) \
+ '_' + str(FLAGS.num_tasks) \
+ '_' + str(FLAGS.num_select) \
+ '_' + FLAGS.mode
resume_itr = 0
model_file = None
tf.global_variables_initializer().run()
tf.train.start_queue_runners()
if FLAGS.resume or not FLAGS.train:
model_file = tf.train.latest_checkpoint(FLAGS.logdir + '/' + exp_string)
if FLAGS.test_iter > 0:
model_file = model_file[:model_file.index('model')] + 'model' + str(FLAGS.test_iter)
if model_file:
ind1 = model_file.index('model')
resume_itr = int(model_file[ind1+5:])
print("Restoring model weights from " + model_file)
saver.restore(sess, model_file)
if FLAGS.train:
active_task_selection_and_train(model, model_backward, saver, sess, exp_string, data_generator, FLAGS.mode, resume_itr)
else:
test(model, saver, sess, exp_string, data_generator, test_num_updates)
if __name__ == "__main__":
main()