forked from facebookresearch/3detr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
216 lines (181 loc) · 7.19 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright (c) Facebook, Inc. and its affiliates.
import torch
import datetime
import logging
import math
import time
import sys
from torch.distributed.distributed_c10d import reduce
from utils.ap_calculator import APCalculator
from utils.misc import SmoothedValue
from utils.dist import (
all_gather_dict,
all_reduce_average,
is_primary,
reduce_dict,
barrier,
)
def compute_learning_rate(args, curr_epoch_normalized):
assert curr_epoch_normalized <= 1.0 and curr_epoch_normalized >= 0.0
if (
curr_epoch_normalized <= (args.warm_lr_epochs / args.max_epoch)
and args.warm_lr_epochs > 0
):
# Linear Warmup
curr_lr = args.warm_lr + curr_epoch_normalized * args.max_epoch * (
(args.base_lr - args.warm_lr) / args.warm_lr_epochs
)
else:
# Cosine Learning Rate Schedule
curr_lr = args.final_lr + 0.5 * (args.base_lr - args.final_lr) * (
1 + math.cos(math.pi * curr_epoch_normalized)
)
return curr_lr
def adjust_learning_rate(args, optimizer, curr_epoch):
curr_lr = compute_learning_rate(args, curr_epoch)
for param_group in optimizer.param_groups:
param_group["lr"] = curr_lr
return curr_lr
def train_one_epoch(
args,
curr_epoch,
model,
optimizer,
criterion,
dataset_config,
dataset_loader,
logger,
):
ap_calculator = APCalculator(
dataset_config=dataset_config,
ap_iou_thresh=[0.25, 0.5],
class2type_map=dataset_config.class2type,
exact_eval=False,
)
curr_iter = curr_epoch * len(dataset_loader)
max_iters = args.max_epoch * len(dataset_loader)
net_device = next(model.parameters()).device
time_delta = SmoothedValue(window_size=10)
loss_avg = SmoothedValue(window_size=10)
model.train()
barrier()
for batch_idx, batch_data_label in enumerate(dataset_loader):
curr_time = time.time()
curr_lr = adjust_learning_rate(args, optimizer, curr_iter / max_iters)
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(net_device)
# Forward pass
optimizer.zero_grad()
inputs = {
"point_clouds": batch_data_label["point_clouds"],
"point_cloud_dims_min": batch_data_label["point_cloud_dims_min"],
"point_cloud_dims_max": batch_data_label["point_cloud_dims_max"],
}
outputs = model(inputs)
# Compute loss
loss, loss_dict = criterion(outputs, batch_data_label)
loss_reduced = all_reduce_average(loss)
loss_dict_reduced = reduce_dict(loss_dict)
if not math.isfinite(loss_reduced.item()):
logging.info(f"Loss in not finite. Training will be stopped.")
sys.exit(1)
loss.backward()
if args.clip_gradient > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_gradient)
optimizer.step()
if curr_iter % args.log_metrics_every == 0:
# This step is slow. AP is computed approximately and locally during training.
# It will gather outputs and ground truth across all ranks.
# It is memory intensive as point_cloud ground truth is a large tensor.
# If GPU memory is not an issue, uncomment the following lines.
# outputs["outputs"] = all_gather_dict(outputs["outputs"])
# batch_data_label = all_gather_dict(batch_data_label)
ap_calculator.step_meter(outputs, batch_data_label)
time_delta.update(time.time() - curr_time)
loss_avg.update(loss_reduced.item())
# logging
if is_primary() and curr_iter % args.log_every == 0:
mem_mb = torch.cuda.max_memory_allocated() / (1024 ** 2)
eta_seconds = (max_iters - curr_iter) * time_delta.avg
eta_str = str(datetime.timedelta(seconds=int(eta_seconds)))
print(
f"Epoch [{curr_epoch}/{args.max_epoch}]; Iter [{curr_iter}/{max_iters}]; Loss {loss_avg.avg:0.2f}; LR {curr_lr:0.2e}; Iter time {time_delta.avg:0.2f}; ETA {eta_str}; Mem {mem_mb:0.2f}MB"
)
logger.log_scalars(loss_dict_reduced, curr_iter, prefix="Train_details/")
train_dict = {}
train_dict["lr"] = curr_lr
train_dict["memory"] = mem_mb
train_dict["loss"] = loss_avg.avg
train_dict["batch_time"] = time_delta.avg
logger.log_scalars(train_dict, curr_iter, prefix="Train/")
curr_iter += 1
barrier()
return ap_calculator
@torch.no_grad()
def evaluate(
args,
curr_epoch,
model,
criterion,
dataset_config,
dataset_loader,
logger,
curr_train_iter,
):
# ap calculator is exact for evaluation. This is slower than the ap calculator used during training.
ap_calculator = APCalculator(
dataset_config=dataset_config,
ap_iou_thresh=[0.25, 0.5],
class2type_map=dataset_config.class2type,
exact_eval=True,
)
curr_iter = 0
net_device = next(model.parameters()).device
num_batches = len(dataset_loader)
time_delta = SmoothedValue(window_size=10)
loss_avg = SmoothedValue(window_size=10)
model.eval()
barrier()
epoch_str = f"[{curr_epoch}/{args.max_epoch}]" if curr_epoch > 0 else ""
for batch_idx, batch_data_label in enumerate(dataset_loader):
curr_time = time.time()
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(net_device)
inputs = {
"point_clouds": batch_data_label["point_clouds"],
"point_cloud_dims_min": batch_data_label["point_cloud_dims_min"],
"point_cloud_dims_max": batch_data_label["point_cloud_dims_max"],
}
outputs = model(inputs)
# Compute loss
loss_str = ""
if criterion is not None:
loss, loss_dict = criterion(outputs, batch_data_label)
loss_reduced = all_reduce_average(loss)
loss_dict_reduced = reduce_dict(loss_dict)
loss_avg.update(loss_reduced.item())
loss_str = f"Loss {loss_avg.avg:0.2f};"
# Memory intensive as it gathers point cloud GT tensor across all ranks
outputs["outputs"] = all_gather_dict(outputs["outputs"])
batch_data_label = all_gather_dict(batch_data_label)
ap_calculator.step_meter(outputs, batch_data_label)
time_delta.update(time.time() - curr_time)
if is_primary() and curr_iter % args.log_every == 0:
mem_mb = torch.cuda.max_memory_allocated() / (1024 ** 2)
print(
f"Evaluate {epoch_str}; Batch [{curr_iter}/{num_batches}]; {loss_str} Iter time {time_delta.avg:0.2f}; Mem {mem_mb:0.2f}MB"
)
test_dict = {}
test_dict["memory"] = mem_mb
test_dict["batch_time"] = time_delta.avg
if criterion is not None:
test_dict["loss"] = loss_avg.avg
curr_iter += 1
barrier()
if is_primary():
if criterion is not None:
logger.log_scalars(
loss_dict_reduced, curr_train_iter, prefix="Test_details/"
)
logger.log_scalars(test_dict, curr_train_iter, prefix="Test/")
return ap_calculator