diff --git a/README.md b/README.md index 01d2670..30ee3d5 100644 --- a/README.md +++ b/README.md @@ -30,7 +30,9 @@ Figure 1. Validation Curve Achieved for differnet Regularizers Proposed - [x] Mutual Coherence Based - [x] Restricted Isometry (**Best Performing** ) -## Usage Wide-Resnet CIFAR +### Usage Wide-Resnet CIFAR +For CIFAR datasets,we choose Wide Resnet Arch. with a depth of 28 and Kernel width of 10,which +gives the best results for comparable number parameters for any Wide-Resnet Model. To train on Cifar-10 using 2 gpu: ```bash @@ -46,10 +48,13 @@ CUDA_VISIBLE_DEVICES=6,7 python train_n.py --ngpu 2 --dataset cifar100 After train phase, you can check saved model in the ```runs``` folder. ## Usage Wide-Resnet SVHN +For SVHN datasets,we choose Wide Resnet Arch. with a depth of 16 and Kernel width of 8,which +gives the best results for comparable number parameters for any Wide-Resnet Model. ``` bash CUDA_VISIBEL_DEVICES=0 python train.py --dataset svhn --model wideresnet --learning_rate 0.01 --epochs 160 ``` +## Result | **Network** | **CIFAR-10** | **CIFAR-100** | **SVHN** | | ----------- | ------------ | ------------- | -------- | | WideResNet | 4.16 | 20.50 | 1.60 |