Skip to content

YangYuanTao/binglingtao

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Can-we-Gain-More-from-Orthogonality

Code Implementation for Restricted Isometry Property(RIP) based Orthogonal Regularizers, proposed for Image Classification Task, for various State-of-art ResNet based architectures.

This repositry provides an introduction, implementation and result achieved in the paper: "Can We Gain More from Orthogonality Regularizations in Training Deep CNNs?", NIPS 2018 [pdf]

Enviroment Used

  • Linux
  • Pytorch 4.0
  • Keras 2.2.4
  • CUDA 9.1
  • Cifar10 and Cifar100
  • SVHN
  • ImageNet

Architecture Used

Wide Resnet.pytorch

Usage Wide-Resnet CIFAR

To train on Cifar-10 using 2 gpu:

CUDA_VISIBLE_DEVICES=6,7 python train_n.py --ngpu 2

To train on Cifar-100 using 2 gpu:

CUDA_VISIBLE_DEVICES=6,7 python train_n.py --ngpu 2 --dataset cifar100

After train phase, you can check saved model in the runs folder.

Usage Wide-Resnet SVHN

CUDA_VISIBEL_DEVICES=0 python train.py --dataset svhn --model wideresnet --learning_rate 0.01 --epochs 160
Network CIFAR-10 CIFAR-100 SVHN
WideResNet 4.16 20.50 1.60
WideResNet + Reg 3.60 18.19 1.52

Other frameworks

Acknowledgement

Cite

@article{xie2016aggregated,
  title={Aggregated residual transformations for deep neural networks},
  author={Xie, Saining and Girshick, Ross and Doll{\'a}r, Piotr and Tu, Zhuowen and He, Kaiming},
  journal={arXiv preprint arXiv:1611.05431},
  year={2016}
}
@article{DBLP:journals/corr/ZagoruykoK16,
  author    = {Sergey Zagoruyko and
               Nikos Komodakis},
  title     = {Wide Residual Networks},
  journal   = {CoRR},
  volume    = {abs/1605.07146},
  year      = {2016},
  url       = {http://arxiv.org/abs/1605.07146},
  archivePrefix = {arXiv},
  eprint    = {1605.07146},
  timestamp = {Mon, 13 Aug 2018 16:46:42 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/ZagoruykoK16},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/HeZRS15,
  author    = {Kaiming He and
               Xiangyu Zhang and
               Shaoqing Ren and
               Jian Sun},
  title     = {Deep Residual Learning for Image Recognition},
  journal   = {CoRR},
  volume    = {abs/1512.03385},
  year      = {2015},
  url       = {http://arxiv.org/abs/1512.03385},
  archivePrefix = {arXiv},
  eprint    = {1512.03385},
  timestamp = {Mon, 13 Aug 2018 16:46:56 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/HeZRS15},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages