forked from zhan-xu/RigNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquick_start.py
467 lines (408 loc) · 21.1 KB
/
quick_start.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# ---------------------------------------------------------------------------------------------------------
# Name: quick_start.py
# Purpose: An easy-to-use demo. Also serves as an interface of the pipeline.
# RigNet Copyright 2020 University of Massachusetts
# RigNet is made available under General Public License Version 3 (GPLv3), or under a Commercial License.
# Please see the LICENSE README.txt file in the main directory for more information and instruction on using and licensing RigNet.
# ---------------------------------------------------------------------------------------------------------
import os
from sys import platform
import trimesh
import numpy as np
import open3d as o3d
import itertools as it
import torch
from torch_geometric.data import Data
from torch_geometric.utils import add_self_loops
from utils import binvox_rw
from utils.rig_parser import Skel, Info
from utils.tree_utils import TreeNode
from utils.io_utils import assemble_skel_skin
from utils.vis_utils import draw_shifted_pts, show_obj_skel, show_mesh_vox
from utils.cluster_utils import meanshift_cluster, nms_meanshift
from utils.mst_utils import increase_cost_for_outside_bone, primMST_symmetry, loadSkel_recur, inside_check, flip
from geometric_proc.common_ops import get_bones, calc_surface_geodesic
from geometric_proc.compute_volumetric_geodesic import pts2line, calc_pts2bone_visible_mat
from gen_dataset import get_tpl_edges, get_geo_edges
from mst_generate import sample_on_bone, getInitId
from run_skinning import post_filter
from models.GCN import JOINTNET_MASKNET_MEANSHIFT as JOINTNET
from models.ROOT_GCN import ROOTNET
from models.PairCls_GCN import PairCls as BONENET
from models.SKINNING import SKINNET
def normalize_obj(mesh_v):
dims = [max(mesh_v[:, 0]) - min(mesh_v[:, 0]),
max(mesh_v[:, 1]) - min(mesh_v[:, 1]),
max(mesh_v[:, 2]) - min(mesh_v[:, 2])]
scale = 1.0 / max(dims)
pivot = np.array([(min(mesh_v[:, 0]) + max(mesh_v[:, 0])) / 2, min(mesh_v[:, 1]),
(min(mesh_v[:, 2]) + max(mesh_v[:, 2])) / 2])
mesh_v[:, 0] -= pivot[0]
mesh_v[:, 1] -= pivot[1]
mesh_v[:, 2] -= pivot[2]
mesh_v *= scale
return mesh_v, pivot, scale
def create_single_data(mesh_filaname):
"""
create input data for the network. The data is wrapped by Data structure in pytorch-geometric library
:param mesh_filaname: name of the input mesh
:return: wrapped data, voxelized mesh, and geodesic distance matrix of all vertices
"""
mesh = o3d.io.read_triangle_mesh(mesh_filaname)
mesh.compute_vertex_normals()
mesh_v = np.asarray(mesh.vertices)
mesh_vn = np.asarray(mesh.vertex_normals)
mesh_f = np.asarray(mesh.triangles)
mesh_v, translation_normalize, scale_normalize = normalize_obj(mesh_v)
mesh_normalized = o3d.geometry.TriangleMesh(vertices=o3d.utility.Vector3dVector(mesh_v), triangles=o3d.utility.Vector3iVector(mesh_f))
o3d.io.write_triangle_mesh(mesh_filename.replace("_remesh.obj", "_normalized.obj"), mesh_normalized)
# vertices
v = np.concatenate((mesh_v, mesh_vn), axis=1)
v = torch.from_numpy(v).float()
# topology edges
print(" gathering topological edges.")
tpl_e = get_tpl_edges(mesh_v, mesh_f).T
tpl_e = torch.from_numpy(tpl_e).long()
tpl_e, _ = add_self_loops(tpl_e, num_nodes=v.size(0))
# surface geodesic distance matrix
print(" calculating surface geodesic matrix.")
surface_geodesic = calc_surface_geodesic(mesh)
# geodesic edges
print(" gathering geodesic edges.")
geo_e = get_geo_edges(surface_geodesic, mesh_v).T
geo_e = torch.from_numpy(geo_e).long()
geo_e, _ = add_self_loops(geo_e, num_nodes=v.size(0))
# batch
batch = torch.zeros(len(v), dtype=torch.long)
# voxel
if not os.path.exists(mesh_filaname.replace('_remesh.obj', '_normalized.binvox')):
if platform == "linux" or platform == "linux2":
os.system("./binvox -d 88 -pb " + mesh_filaname.replace("_remesh.obj", "_normalized.obj"))
elif platform == "win32":
os.system("binvox.exe -d 88 " + mesh_filaname.replace("_remesh.obj", "_normalized.obj"))
else:
raise Exception('Sorry, we currently only support windows and linux.')
with open(mesh_filaname.replace('_remesh.obj', '_normalized.binvox'), 'rb') as fvox:
vox = binvox_rw.read_as_3d_array(fvox)
data = Data(x=v[:, 3:6], pos=v[:, 0:3], tpl_edge_index=tpl_e, geo_edge_index=geo_e, batch=batch)
return data, vox, surface_geodesic, translation_normalize, scale_normalize
def predict_joints(input_data, vox, joint_pred_net, threshold, bandwidth=None, mesh_filename=None):
"""
Predict joints
:param input_data: wrapped input data
:param vox: voxelized mesh
:param joint_pred_net: network for predicting joints
:param threshold: density threshold to filter out shifted points
:param bandwidth: bandwidth for meanshift clustering
:param mesh_filename: mesh filename for visualization
:return: wrapped data with predicted joints, pair-wise bone representation added.
"""
data_displacement, _, attn_pred, bandwidth_pred = joint_pred_net(input_data)
y_pred = data_displacement + input_data.pos
y_pred_np = y_pred.data.cpu().numpy()
attn_pred_np = attn_pred.data.cpu().numpy()
y_pred_np, index_inside = inside_check(y_pred_np, vox)
attn_pred_np = attn_pred_np[index_inside, :]
y_pred_np = y_pred_np[attn_pred_np.squeeze() > 1e-3]
attn_pred_np = attn_pred_np[attn_pred_np.squeeze() > 1e-3]
# symmetrize points by reflecting
y_pred_np_reflect = y_pred_np * np.array([[-1, 1, 1]])
y_pred_np = np.concatenate((y_pred_np, y_pred_np_reflect), axis=0)
attn_pred_np = np.tile(attn_pred_np, (2, 1))
#img = draw_shifted_pts(mesh_filename, y_pred_np, weights=attn_pred_np)
if bandwidth is None:
bandwidth = bandwidth_pred.item()
y_pred_np = meanshift_cluster(y_pred_np, bandwidth, attn_pred_np, max_iter=40)
#img = draw_shifted_pts(mesh_filename, y_pred_np, weights=attn_pred_np)
Y_dist = np.sum(((y_pred_np[np.newaxis, ...] - y_pred_np[:, np.newaxis, :]) ** 2), axis=2)
density = np.maximum(bandwidth ** 2 - Y_dist, np.zeros(Y_dist.shape))
density = np.sum(density, axis=0)
density_sum = np.sum(density)
y_pred_np = y_pred_np[density / density_sum > threshold]
attn_pred_np = attn_pred_np[density / density_sum > threshold][:, 0]
density = density[density / density_sum > threshold]
#img = draw_shifted_pts(mesh_filename, y_pred_np, weights=attn_pred_np)
pred_joints = nms_meanshift(y_pred_np, density, bandwidth)
pred_joints, _ = flip(pred_joints)
#img = draw_shifted_pts(mesh_filename, pred_joints)
# prepare and add new data members
pairs = list(it.combinations(range(pred_joints.shape[0]), 2))
pair_attr = []
for pr in pairs:
dist = np.linalg.norm(pred_joints[pr[0]] - pred_joints[pr[1]])
bone_samples = sample_on_bone(pred_joints[pr[0]], pred_joints[pr[1]])
bone_samples_inside, _ = inside_check(bone_samples, vox)
outside_proportion = len(bone_samples_inside) / (len(bone_samples) + 1e-10)
attr = np.array([dist, outside_proportion, 1])
pair_attr.append(attr)
pairs = np.array(pairs)
pair_attr = np.array(pair_attr)
pairs = torch.from_numpy(pairs).float()
pair_attr = torch.from_numpy(pair_attr).float()
pred_joints = torch.from_numpy(pred_joints).float()
joints_batch = torch.zeros(len(pred_joints), dtype=torch.long)
pairs_batch = torch.zeros(len(pairs), dtype=torch.long)
input_data.joints = pred_joints
input_data.pairs = pairs
input_data.pair_attr = pair_attr
input_data.joints_batch = joints_batch
input_data.pairs_batch = pairs_batch
return input_data
def predict_skeleton(input_data, vox, root_pred_net, bone_pred_net, mesh_filename):
"""
Predict skeleton structure based on joints
:param input_data: wrapped data
:param vox: voxelized mesh
:param root_pred_net: network to predict root
:param bone_pred_net: network to predict pairwise connectivity cost
:param mesh_filename: meshfilename for debugging
:return: predicted skeleton structure
"""
root_id = getInitId(input_data, root_pred_net)
pred_joints = input_data.joints.data.cpu().numpy()
with torch.no_grad():
connect_prob, _ = bone_pred_net(input_data, permute_joints=False)
connect_prob = torch.sigmoid(connect_prob)
pair_idx = input_data.pairs.long().data.cpu().numpy()
prob_matrix = np.zeros((len(input_data.joints), len(input_data.joints)))
prob_matrix[pair_idx[:, 0], pair_idx[:, 1]] = connect_prob.data.cpu().numpy().squeeze()
prob_matrix = prob_matrix + prob_matrix.transpose()
cost_matrix = -np.log(prob_matrix + 1e-10)
cost_matrix = increase_cost_for_outside_bone(cost_matrix, pred_joints, vox)
pred_skel = Info()
parent, key, root_id = primMST_symmetry(cost_matrix, root_id, pred_joints)
for i in range(len(parent)):
if parent[i] == -1:
pred_skel.root = TreeNode('root', tuple(pred_joints[i]))
break
loadSkel_recur(pred_skel.root, i, None, pred_joints, parent)
pred_skel.joint_pos = pred_skel.get_joint_dict()
#show_mesh_vox(mesh_filename, vox, pred_skel.root)
try:
img = show_obj_skel(mesh_filename, pred_skel.root)
except:
print("Visualization is not supported on headless servers. Please consider other headless rendering methods.")
return pred_skel
def calc_geodesic_matrix(bones, mesh_v, surface_geodesic, mesh_filename, subsampling=False):
"""
calculate volumetric geodesic distance from vertices to each bones
:param bones: B*6 numpy array where each row stores the starting and ending joint position of a bone
:param mesh_v: V*3 mesh vertices
:param surface_geodesic: geodesic distance matrix of all vertices
:param mesh_filename: mesh filename
:return: an approaximate volumetric geodesic distance matrix V*B, were (v,b) is the distance from vertex v to bone b
"""
if subsampling:
mesh0 = o3d.io.read_triangle_mesh(mesh_filename)
mesh0 = mesh0.simplify_quadric_decimation(3000)
o3d.io.write_triangle_mesh(mesh_filename.replace(".obj", "_simplified.obj"), mesh0)
mesh_trimesh = trimesh.load(mesh_filename.replace(".obj", "_simplified.obj"))
subsamples_ids = np.random.choice(len(mesh_v), np.min((len(mesh_v), 1500)), replace=False)
subsamples = mesh_v[subsamples_ids, :]
surface_geodesic = surface_geodesic[subsamples_ids, :][:, subsamples_ids]
else:
mesh_trimesh = trimesh.load(mesh_filename)
subsamples = mesh_v
origins, ends, pts_bone_dist = pts2line(subsamples, bones)
pts_bone_visibility = calc_pts2bone_visible_mat(mesh_trimesh, origins, ends)
pts_bone_visibility = pts_bone_visibility.reshape(len(bones), len(subsamples)).transpose()
pts_bone_dist = pts_bone_dist.reshape(len(bones), len(subsamples)).transpose()
# remove visible points which are too far
for b in range(pts_bone_visibility.shape[1]):
visible_pts = np.argwhere(pts_bone_visibility[:, b] == 1).squeeze(1)
if len(visible_pts) == 0:
continue
threshold_b = np.percentile(pts_bone_dist[visible_pts, b], 15)
pts_bone_visibility[pts_bone_dist[:, b] > 1.3 * threshold_b, b] = False
visible_matrix = np.zeros(pts_bone_visibility.shape)
visible_matrix[np.where(pts_bone_visibility == 1)] = pts_bone_dist[np.where(pts_bone_visibility == 1)]
for c in range(visible_matrix.shape[1]):
unvisible_pts = np.argwhere(pts_bone_visibility[:, c] == 0).squeeze(1)
visible_pts = np.argwhere(pts_bone_visibility[:, c] == 1).squeeze(1)
if len(visible_pts) == 0:
visible_matrix[:, c] = pts_bone_dist[:, c]
continue
for r in unvisible_pts:
dist1 = np.min(surface_geodesic[r, visible_pts])
nn_visible = visible_pts[np.argmin(surface_geodesic[r, visible_pts])]
if np.isinf(dist1):
visible_matrix[r, c] = 8.0 + pts_bone_dist[r, c]
else:
visible_matrix[r, c] = dist1 + visible_matrix[nn_visible, c]
if subsampling:
nn_dist = np.sum((mesh_v[:, np.newaxis, :] - subsamples[np.newaxis, ...])**2, axis=2)
nn_ind = np.argmin(nn_dist, axis=1)
visible_matrix = visible_matrix[nn_ind, :]
os.remove(mesh_filename.replace(".obj", "_simplified.obj"))
return visible_matrix
def predict_skinning(input_data, pred_skel, skin_pred_net, surface_geodesic, mesh_filename, subsampling=False):
"""
predict skinning
:param input_data: wrapped input data
:param pred_skel: predicted skeleton
:param skin_pred_net: network to predict skinning weights
:param surface_geodesic: geodesic distance matrix of all vertices
:param mesh_filename: mesh filename
:return: predicted rig with skinning weights information
"""
global device, output_folder
num_nearest_bone = 5
bones, bone_names, bone_isleaf = get_bones(pred_skel)
mesh_v = input_data.pos.data.cpu().numpy()
print(" calculating volumetric geodesic distance from vertices to bone. This step takes some time...")
geo_dist = calc_geodesic_matrix(bones, mesh_v, surface_geodesic, mesh_filename, subsampling=subsampling)
input_samples = [] # joint_pos (x, y, z), (bone_id, 1/D)*5
loss_mask = []
skin_nn = []
for v_id in range(len(mesh_v)):
geo_dist_v = geo_dist[v_id]
bone_id_near_to_far = np.argsort(geo_dist_v)
this_sample = []
this_nn = []
this_mask = []
for i in range(num_nearest_bone):
if i >= len(bones):
this_sample += bones[bone_id_near_to_far[0]].tolist()
this_sample.append(1.0 / (geo_dist_v[bone_id_near_to_far[0]] + 1e-10))
this_sample.append(bone_isleaf[bone_id_near_to_far[0]])
this_nn.append(0)
this_mask.append(0)
else:
skel_bone_id = bone_id_near_to_far[i]
this_sample += bones[skel_bone_id].tolist()
this_sample.append(1.0 / (geo_dist_v[skel_bone_id] + 1e-10))
this_sample.append(bone_isleaf[skel_bone_id])
this_nn.append(skel_bone_id)
this_mask.append(1)
input_samples.append(np.array(this_sample)[np.newaxis, :])
skin_nn.append(np.array(this_nn)[np.newaxis, :])
loss_mask.append(np.array(this_mask)[np.newaxis, :])
skin_input = np.concatenate(input_samples, axis=0)
loss_mask = np.concatenate(loss_mask, axis=0)
skin_nn = np.concatenate(skin_nn, axis=0)
skin_input = torch.from_numpy(skin_input).float()
input_data.skin_input = skin_input
input_data.to(device)
skin_pred = skin_pred_net(data)
skin_pred = torch.softmax(skin_pred, dim=1)
skin_pred = skin_pred.data.cpu().numpy()
skin_pred = skin_pred * loss_mask
skin_nn = skin_nn[:, 0:num_nearest_bone]
skin_pred_full = np.zeros((len(skin_pred), len(bone_names)))
for v in range(len(skin_pred)):
for nn_id in range(len(skin_nn[v, :])):
skin_pred_full[v, skin_nn[v, nn_id]] = skin_pred[v, nn_id]
print(" filtering skinning prediction")
tpl_e = input_data.tpl_edge_index.data.cpu().numpy()
skin_pred_full = post_filter(skin_pred_full, tpl_e, num_ring=1)
skin_pred_full[skin_pred_full < np.max(skin_pred_full, axis=1, keepdims=True) * 0.35] = 0.0
skin_pred_full = skin_pred_full / (skin_pred_full.sum(axis=1, keepdims=True) + 1e-10)
skel_res = assemble_skel_skin(pred_skel, skin_pred_full)
return skel_res
def tranfer_to_ori_mesh(filename_ori, filename_remesh, pred_rig):
"""
convert the predicted rig of remeshed model to the rig of the original model.
Just assign skinning weight based on nearest neighbor
:param filename_ori: original mesh filename
:param filename_remesh: remeshed mesh filename
:param pred_rig: predicted rig
:return: predicted rig for original mesh
"""
mesh_remesh = o3d.io.read_triangle_mesh(filename_remesh)
mesh_ori = o3d.io.read_triangle_mesh(filename_ori)
tranfer_rig = Info()
vert_remesh = np.asarray(mesh_remesh.vertices)
vert_ori = np.asarray(mesh_ori.vertices)
vertice_distance = np.sqrt(np.sum((vert_ori[np.newaxis, ...] - vert_remesh[:, np.newaxis, :]) ** 2, axis=2))
vertice_raw_id = np.argmin(vertice_distance, axis=0) # nearest vertex id on the fixed mesh for each vertex on the remeshed mesh
tranfer_rig.root = pred_rig.root
tranfer_rig.joint_pos = pred_rig.joint_pos
new_skin = []
for v in range(len(vert_ori)):
skin_v = [v]
v_nn = vertice_raw_id[v]
skin_v += pred_rig.joint_skin[v_nn][1:]
new_skin.append(skin_v)
tranfer_rig.joint_skin = new_skin
return tranfer_rig
if __name__ == '__main__':
input_folder = "quick_start/"
# downsample_skinning is used to speed up the calculation of volumetric geodesic distance
# and to save cpu memory in skinning calculation.
# Change to False to be more accurate but less efficient.
downsample_skinning = True
# load all weights
print("loading all networks...")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
jointNet = JOINTNET()
jointNet.to(device)
jointNet.eval()
jointNet_checkpoint = torch.load('checkpoints/gcn_meanshift/model_best.pth.tar')
jointNet.load_state_dict(jointNet_checkpoint['state_dict'])
print(" joint prediction network loaded.")
rootNet = ROOTNET()
rootNet.to(device)
rootNet.eval()
rootNet_checkpoint = torch.load('checkpoints/rootnet/model_best.pth.tar')
rootNet.load_state_dict(rootNet_checkpoint['state_dict'])
print(" root prediction network loaded.")
boneNet = BONENET()
boneNet.to(device)
boneNet.eval()
boneNet_checkpoint = torch.load('checkpoints/bonenet/model_best.pth.tar')
boneNet.load_state_dict(boneNet_checkpoint['state_dict'])
print(" connection prediction network loaded.")
skinNet = SKINNET(nearest_bone=5, use_Dg=True, use_Lf=True)
skinNet_checkpoint = torch.load('checkpoints/skinnet/model_best.pth.tar')
skinNet.load_state_dict(skinNet_checkpoint['state_dict'])
skinNet.to(device)
skinNet.eval()
print(" skinning prediction network loaded.")
# Here we provide 16~17 examples. For best results, we will need to override the learned bandwidth and its associated threshold
# To process other input characters, please first try the learned bandwidth (0.0429 in the provided model), and the default threshold 1e-5.
# We also use these two default parameters for processing all test models in batch.
#model_id, bandwidth, threshold = "smith", None, 1e-5
model_id, bandwidth, threshold = "17872", 0.045, 0.75e-5
#model_id, bandwidth, threshold = "8210", 0.05, 1e-5
#model_id, bandwidth, threshold = "8330", 0.05, 0.8e-5
#model_id, bandwidth, threshold = "9477", 0.043, 2.5e-5
#model_id, bandwidth, threshold = "17364", 0.058, 0.3e-5
#model_id, bandwidth, threshold = "15930", 0.055, 0.4e-5
#model_id, bandwidth, threshold = "8333", 0.04, 2e-5
#model_id, bandwidth, threshold = "8338", 0.052, 0.9e-5
#model_id, bandwidth, threshold = "3318", 0.03, 0.92e-5
#model_id, bandwidth, threshold = "15446", 0.032, 0.58e-5
#model_id, bandwidth, threshold = "1347", 0.062, 3e-5
#model_id, bandwidth, threshold = "11814", 0.06, 0.6e-5
#model_id, bandwidth, threshold = "2982", 0.045, 0.3e-5
#model_id, bandwidth, threshold = "2586", 0.05, 0.6e-5
#model_id, bandwidth, threshold = "8184", 0.05, 0.4e-5
#model_id, bandwidth, threshold = "9000", 0.035, 0.16e-5
# create data used for inferece
print("creating data for model ID {:s}".format(model_id))
mesh_filename = os.path.join(input_folder, '{:s}_remesh.obj'.format(model_id))
data, vox, surface_geodesic, translation_normalize, scale_normalize = create_single_data(mesh_filename)
data.to(device)
print("predicting joints")
data = predict_joints(data, vox, jointNet, threshold, bandwidth=bandwidth,
mesh_filename=mesh_filename.replace("_remesh.obj", "_normalized.obj"))
data.to(device)
print("predicting connectivity")
pred_skeleton = predict_skeleton(data, vox, rootNet, boneNet,
mesh_filename=mesh_filename.replace("_remesh.obj", "_normalized.obj"))
print("predicting skinning")
pred_rig = predict_skinning(data, pred_skeleton, skinNet, surface_geodesic,
mesh_filename.replace("_remesh.obj", "_normalized.obj"),
subsampling=downsample_skinning)
# here we reverse the normalization to the original scale and position
pred_rig.normalize(scale_normalize, -translation_normalize)
print("Saving result")
if True:
# here we use original mesh tesselation (without remeshing)
mesh_filename_ori = os.path.join(input_folder, '{:s}_ori.obj'.format(model_id))
pred_rig = tranfer_to_ori_mesh(mesh_filename_ori, mesh_filename, pred_rig)
pred_rig.save(mesh_filename_ori.replace('.obj', '_rig.txt'))
else:
# here we use remeshed mesh
pred_rig.save(mesh_filename.replace('.obj', '_rig.txt'))
print("Done!")