forked from supportingvector/VAEHRRP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_data.py
267 lines (239 loc) · 10.8 KB
/
test_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 10 20:48:03 2018
@author: xms
"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import hrrp_dataloader
from torch.nn import init
import numpy as np
from matplotlib import pyplot as plt
'''测试用的z生成'''
def train_z1(BATCH_SIZE,vae_encoder):
# result=torch.zeros([0,0])
train_loader = hrrp_dataloader.train_data_generator1(file_path=r'D:\科研\VAEHRRP',batch_size=BATCH_SIZE)
result=[]
for i in range(int((52000)/BATCH_SIZE)):
##52000,52000,36000,2000,2000,1200
x,label=next(train_loader)
x= torch.tensor(x).type(torch.FloatTensor).cuda()
label = torch.zeros(BATCH_SIZE,3).type(torch.FloatTensor).cuda()
z_g,z_d, mu_g,mu_d, logvar_g,logvar_d,prior_mu,prior_logvar = vae_encoder.forward(x,label)
z_d=z_d.cpu()
z_g=z_g.cpu()
result.append(z_d.data.numpy())
#print('test -- [{}/{} ({:.0f}%)]'.format(i*len(x), 2000, 1./28*i*50/BATCH_SIZE))
X=tuple(result)
X=np.concatenate(X,axis=0)
plt.hist(X, bins=200, histtype="stepfilled", alpha=.8)
plt.title(r'Histogram of Class 1 train data')
plt.show()
np.save('save\\z1.npy',X)
return result
def train_z2(BATCH_SIZE,vae_encoder):
# result=torch.zeros([0,0])
train_loader = hrrp_dataloader.train_data_generator2(file_path=r'D:\科研\VAEHRRP',batch_size=BATCH_SIZE)
result=[]
for i in range(int((52000)/BATCH_SIZE)):
##52000,52000,36000,2000,2000,1200
x,label=next(train_loader)
x= torch.tensor(x).type(torch.FloatTensor).cuda()
label = torch.zeros(BATCH_SIZE,3).type(torch.FloatTensor).cuda()
z_g,z, mu_g,mu_d, logvar_g,logvar_d,prior_mu,prior_logvar= vae_encoder.forward(x,label)
z=z.cpu()
result.append(z.data.numpy())
#print('test -- [{}/{} ({:.0f}%)]'.format(i*len(x), 2000, 1./28*i*50/BATCH_SIZE))
X=tuple(result)
X=np.concatenate(X,axis=0)
plt.hist(X, bins=200, histtype="stepfilled", alpha=.8)
plt.title(r'Histogram of Class 2 train data')
plt.show()
np.save('save\\z2.npy',X)
return result
def train_z3(BATCH_SIZE,vae_encoder):
# result=torch.zeros([0,0])
train_loader = hrrp_dataloader.train_data_generator3(file_path=r'D:\科研\VAEHRRP',batch_size=BATCH_SIZE)
result=[]
for i in range(int((36000)/BATCH_SIZE)):
##52000,52000,36000,2000,2000,1200
x,label=next(train_loader)
x= torch.tensor(x).type(torch.FloatTensor).cuda()
label = torch.zeros(BATCH_SIZE,3).type(torch.FloatTensor).cuda()
z_g,z, mu_g,mu_d, logvar_g,logvar_d,prior_mu,prior_logvar = vae_encoder.forward(x,label)
z=z.cpu()
result.append(z.data.numpy())
#print('test -- [{}/{} ({:.0f}%)]'.format(i*len(x), 2000, 1./28*i*50/BATCH_SIZE))
X=tuple(result)
X=np.concatenate(X,axis=0)
plt.hist(X, bins=200, histtype="stepfilled", alpha=.8)
plt.title(r'Histogram of Class 3 train data')
plt.show()
np.save('save\\z3.npy',X)
return result
def test_z1(BATCH_SIZE,vae_encoder):
train_loader = hrrp_dataloader.train_data_generator_t1(file_path=r'D:\科研\VAEHRRP',batch_size=BATCH_SIZE)
# result=torch.zeros([0,0])
result=[]
for i in range(int((2000)/BATCH_SIZE)):
##52000,52000,36000,2000,2000,1200
x,label=next(train_loader)
x= torch.tensor(x).type(torch.FloatTensor).cuda()
label = torch.zeros(BATCH_SIZE,3).type(torch.FloatTensor).cuda()
z_g,z, mu_g,mu_d, logvar_g,logvar_d,prior_mu,prior_logvar = vae_encoder.forward(x,label)
z=z.cpu()
result.append(z.data.numpy())
#print('test -- [{}/{} ({:.0f}%)]'.format(i*len(x), 2000, 1./28*i*50/BATCH_SIZE))
X=tuple(result)
X=np.concatenate(X,axis=0)
plt.hist(X, bins=80, histtype="stepfilled", alpha=.8)
plt.title(r'Histogram of Class 1 test data')
plt.show()
np.save('save\\z1t.npy',X)
return result
def test_z2(BATCH_SIZE,vae_encoder):
# result=torch.zeros([0,0])
train_loader = hrrp_dataloader.train_data_generator_t2(file_path=r'D:\科研\VAEHRRP',batch_size=BATCH_SIZE)
result=[]
for i in range(int((2000)/BATCH_SIZE)):
##52000,52000,36000,2000,2000,1200
x,label=next(train_loader)
x= torch.tensor(x).type(torch.FloatTensor).cuda()
label = torch.zeros(BATCH_SIZE,3).type(torch.FloatTensor).cuda()
z_g,z, mu_g,mu_d, logvar_g,logvar_d,prior_mu,prior_logvar = vae_encoder.forward(x,label)
z=z.cpu()
result.append(z.data.numpy())
#print('test -- [{}/{} ({:.0f}%)]'.format(i*len(x), 2000, 1./28*i*50/BATCH_SIZE))
X=tuple(result)
X=np.concatenate(X,axis=0)
plt.hist(X, bins=80, histtype="stepfilled", alpha=.8)
plt.title(r'Histogram of Class 2 test data')
plt.show()
np.save('save\\z2t.npy',X)
return result
def test_z3(BATCH_SIZE,vae_encoder):
# result=torch.zeros([0,0])
train_loader = hrrp_dataloader.train_data_generator_t3(file_path=r'D:\科研\VAEHRRP',batch_size=BATCH_SIZE)
result=[]
for i in range(int((1200)/BATCH_SIZE)):
##52000,52000,36000,2000,2000,1200
x,label=next(train_loader)
x= torch.tensor(x).type(torch.FloatTensor).cuda()
label = torch.zeros(BATCH_SIZE,3).type(torch.FloatTensor).cuda()
z_g,z, mu_g,mu_d, logvar_g,logvar_d,prior_mu,prior_logvar = vae_encoder.forward(x,label)
z=z.cpu()
result.append(z.data.numpy())
#print('test -- [{}/{} ({:.0f}%)]'.format(i*len(x), 2000, 1./28*i*50/BATCH_SIZE))
X=tuple(result)
X=np.concatenate(X,axis=0)
plt.hist(X, bins=80, histtype="stepfilled", alpha=.8)
plt.title(r'Histogram of Class 3 test data')
plt.show()
np.save('save\\z3t.npy',X)
#
return result
def show_z1(BATCH_SIZE,vae_encoder,vae_decoder):
# result=torch.zeros([0,0])
index=np.array(range(0,256))
train_loader = hrrp_dataloader.train_data_generator1(file_path=r'D:\科研\VAEHRRP',batch_size=BATCH_SIZE)
result=[]
x,label=next(train_loader)
plt.plot(index,x[0].reshape(256))
x= torch.tensor(x).type(torch.FloatTensor).cuda()
label = torch.zeros(BATCH_SIZE,3).type(torch.FloatTensor).cuda()
z_g,z_d, mu_g,mu_d, logvar_g,logvar_d,prior_mu,prior_logvar = vae_encoder.forward(x,label)
z_d=z_d.cpu()
z_g=z_g.cpu()
result.append(z_d.data.numpy())
#print('test -- [{}/{} ({:.0f}%)]'.format(i*len(x), 2000, 1./28*i*50/BATCH_SIZE))
mu,logvar=vae_decoder.forward(z_g,z_d)
plt.plot(index,mu.data.numpy()[0].reshape(256))
plt.show()
def show_z2(BATCH_SIZE,vae_encoder,vae_decoder):
# result=torch.zeros([0,0])
index=np.array(range(0,256))
train_loader = hrrp_dataloader.train_data_generator2(file_path=r'D:\科研\VAEHRRP',batch_size=BATCH_SIZE)
result=[]
x,label=next(train_loader)
plt.plot(index,x[0].reshape(256))
x= torch.tensor(x).type(torch.FloatTensor).cuda()
label = torch.zeros(BATCH_SIZE,3).type(torch.FloatTensor).cuda()
z_g,z_d, mu_g,mu_d, logvar_g,logvar_d,prior_mu,prior_logvar = vae_encoder.forward(x,label)
z_d=z_d.cpu()
z_g=z_g.cpu()
result.append(z_d.data.numpy())
#print('test -- [{}/{} ({:.0f}%)]'.format(i*len(x), 2000, 1./28*i*50/BATCH_SIZE))
mu,logvar=vae_decoder.forward(z_g,z_d)
plt.plot(index,mu.data.numpy()[0].reshape(256))
plt.show()
def show_z3(BATCH_SIZE,vae_encoder,vae_decoder):
# result=torch.zeros([0,0])
index=np.array(range(0,256))
train_loader = hrrp_dataloader.train_data_generator3(file_path=r'D:\科研\VAEHRRP',batch_size=BATCH_SIZE)
result=[]
x,label=next(train_loader)
plt.plot(index,x[0].reshape(256))
x= torch.tensor(x).type(torch.FloatTensor).cuda()
label = torch.zeros(BATCH_SIZE,3).type(torch.FloatTensor).cuda()
z_g,z_d, mu_g,mu_d, logvar_g,logvar_d,prior_mu,prior_logvar = vae_encoder.forward(x,label)
z_d=z_d.cpu()
z_g=z_g.cpu()
result.append(z_d.data.numpy())
#print('test -- [{}/{} ({:.0f}%)]'.format(i*len(x), 2000, 1./28*i*50/BATCH_SIZE))
mu,logvar=vae_decoder.forward(z_g,z_d)
plt.plot(index,mu.data.numpy()[0].reshape(256))
plt.show()
def show_zt1(BATCH_SIZE,vae_encoder,vae_decoder):
# result=torch.zeros([0,0])
index=np.array(range(0,256))
train_loader = hrrp_dataloader.train_data_generator_t1(file_path=r'D:\科研\VAEHRRP',batch_size=BATCH_SIZE)
result=[]
x,label=next(train_loader)
plt.plot(index,x[0].reshape(256))
x= torch.tensor(x).type(torch.FloatTensor).cuda()
label = torch.zeros(BATCH_SIZE,3).type(torch.FloatTensor).cuda()
z_g,z_d, mu_g,mu_d, logvar_g,logvar_d,prior_mu,prior_logvar = vae_encoder.forward(x,label)
z_d=z_d.cpu()
z_g=z_g.cpu()
result.append(z_d.data.numpy())
#print('test -- [{}/{} ({:.0f}%)]'.format(i*len(x), 2000, 1./28*i*50/BATCH_SIZE))
mu,logvar=vae_decoder.forward(z_g,z_d)
plt.plot(index,mu.data.numpy()[0].reshape(256))
plt.show()
def show_zt2(BATCH_SIZE,vae_encoder,vae_decoder):
# result=torch.zeros([0,0])
index=np.array(range(0,256))
train_loader = hrrp_dataloader.train_data_generator_t2(file_path=r'D:\科研\VAEHRRP',batch_size=BATCH_SIZE)
result=[]
x,label=next(train_loader)
plt.plot(index,x[0].reshape(256))
x= torch.tensor(x).type(torch.FloatTensor).cuda()
label = torch.zeros(BATCH_SIZE,3).type(torch.FloatTensor).cuda()
z_g,z_d, mu_g,mu_d, logvar_g,logvar_d,prior_mu,prior_logvar = vae_encoder.forward(x,label)
z_d=z_d.cpu()
z_g=z_g.cpu()
result.append(z_d.data.numpy())
#print('test -- [{}/{} ({:.0f}%)]'.format(i*len(x), 2000, 1./28*i*50/BATCH_SIZE))
mu,logvar=vae_decoder.forward(z_g,z_d)
plt.plot(index,mu.data.numpy()[0].reshape(256))
plt.show()
def show_zt3(BATCH_SIZE,vae_encoder,vae_decoder):
# result=torch.zeros([0,0])
index=np.array(range(0,256))
train_loader = hrrp_dataloader.train_data_generator_t3(file_path=r'D:\科研\VAEHRRP',batch_size=BATCH_SIZE)
result=[]
x,label=next(train_loader)
plt.plot(index,x[0].reshape(256))
x= torch.tensor(x).type(torch.FloatTensor).cuda()
label = torch.zeros(BATCH_SIZE,3).type(torch.FloatTensor).cuda()
z_g,z_d, mu_g,mu_d, logvar_g,logvar_d,prior_mu,prior_logvar = vae_encoder.forward(x,label)
z_d=z_d.cpu()
z_g=z_g.cpu()
result.append(z_d.data.numpy())
#print('test -- [{}/{} ({:.0f}%)]'.format(i*len(x), 2000, 1./28*i*50/BATCH_SIZE))
mu,logvar=vae_decoder.forward(z_g,z_d)
plt.plot(index,mu.data.numpy()[0].reshape(256))
plt.show()