forked from tensorflow/tfjs-core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_uint8_tensor_to_png.py
63 lines (54 loc) · 2.13 KB
/
convert_uint8_tensor_to_png.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Converts an array of 3D tensors to pngs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import numpy as np
from PIL import Image
FLAGS = None
def main():
fpath = os.path.expanduser(FLAGS.uint8_tensor_file)
with open(fpath, 'rb') as f:
# a has shape N x Width x Height x Channels
a = np.frombuffer(f.read(), np.uint8).reshape(
[-1, FLAGS.size, FLAGS.size, FLAGS.num_channels])
print('Read', a.shape[0], 'images')
print('min/max pixel values: ', a.min(), '/', a.max())
# Make each image take a single row in the big batch image by flattening the
# width (2nd) and height (3rd) dimension.
# a has shape N x (Width*Height) x Channels.
a = a.reshape([a.shape[0], -1, FLAGS.num_channels]).squeeze()
im = Image.fromarray(a)
im.save(fpath + '.png')
print('Saved image with width/height', im.size, 'at', fpath + '.png')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--uint8_tensor_file',
type=str,
required=True,
help='File path to the binary uint8 tensor to convert to png')
parser.add_argument(
'--size', type=int, required=True, help='Width/Height of each image')
parser.add_argument(
'--num_channels', type=int, required=True, help='Number of channelse')
FLAGS, unparsed = parser.parse_known_args()
if unparsed:
print('Error, unrecognized flags:', unparsed)
exit(-1)
main()