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Chapter 8

Newton’s Method
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1-dimensional case: Newton-Raphson method

Goal: find a zero of differentiable
f : R→ R.

Method:

xt+1 := xt −
f(xt)

f ′(xt)
, t ≥ 0.

xt+1 solves

f(xt) + f ′(xt)(x− xt) = 0, xt xt+1

f(x)

f(xt) + f ′(xt)(x− xt)
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The Babylonian method

Computing square roots: find a zero of f(x) = x2 −R,R ∈ R+.

Newton-Raphson step:

xt+1 = xt −
f(xt)

f ′(xt)
= xt −

x2t −R
2xt

=
1

2

(
xt +

R

xt

)
.

Starting from x0 > 0, we have

xt+1 =
1

2

(
xt +

R

xt

)
≥ xt

2
.

Starting from x0 = R ≥ 1, it takes O(logR) steps to get xt−
√
R < 1/2 (Exercise 45).
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The Babylonian method - Takeoff

Suppose x0 −
√
R < 1/2 (achievable after O(logR) steps).

xt+1 −
√
R =

1

2

(
xt +

R

xt

)
−
√
R =

xt
2

+
R

2xt
−
√
R =

1

2xt

(
xt −

√
R
)2
.

Assume R ≥ 1/4.Then all iterates have value at least
√
R ≥ 1/2. Hence we get

xt+1 −
√
R ≤

(
xt −

√
R
)2
.

xT −
√
R ≤

(
x0 −

√
R
)2T

<

(
1

2

)2T

, T ≥ 0.

To get xT −
√
R < ε, we only need T = log log(1ε ) steps!
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The Babylonian method - Example

R = 1000, IEEE 754 double arithmetic

I 7 steps to get x7 −
√

1000 < 1/2

I 3 more steps to get x10 equal to
√

1000 up to machine precision (53 binary digits).

I First phase: ≈ one more correct digit per iteration

I Last phase, ≈ double the number of correct digits in each iteration!

Once you’re close, you’re there. . .
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Newton’s method for optimization

1-dimensional case: Find a global minimum x? of a differentiable convex function
f : R→ R.

Can equivalently search for a zero of the derivative f ′: Apply the Newton-Raphson
method to f ′.

Update step:

xt+1 := xt −
f ′(xt)

f ′′(xt)
= xt − f ′′(xt)−1f ′(xt)

(needs f twice differentiable).

d-dimensional case: Newton’s method for minimizing a convex function f : Rd → R:

xt+1 := xt −∇2f(xt)
−1∇f(xt)
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Newton’s method = adaptive gradient descent

General update scheme:
xt+1 = xt −H(xt)∇f(xt),

where H(x) ∈ Rd×d is some matrix.

Newton’s method: H = ∇2f(xt)
−1.

Gradient descent: H = γI.

Newton’s method: “adaptive gradient descent”, adaptation is w.r.t. the local geometry
of the function at xt.
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Convergence in one step on quadratic functions
A nondegenerate quadratic function is a function of the form

f(x) =
1

2
x>Mx− q>x + c,

where M ∈ Rd×d is an invertible symmetric matrix, q ∈ Rd, c ∈ R. Let x? = M−1q
be the unique solution of ∇f(x) = 0.

I x? is the unique global minimum if f is convex.

Lemma

On nondegenerate quadratic functions, with any starting point x0 ∈ Rd, Newton’s
method yields x1 = x?.

Proof.

We have ∇f(x) = Mx− q (this implies x? = M−1q) and ∇2f(x) = M . Hence,

x1 = x0 −∇2f(x0)
−1∇f(x0) = x0 −M−1(Mx0 − q) = M−1q = x?.
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Affine Invariance

Newton’s method is affine invariant
(invariant under any invertible affine transformation):

Lemma (Exercise 46)

Let f : Rd → R be twice differentiable, A ∈ Rd×d an invertible matrix, b ∈ Rd. Let
g : Rd → R be the (bijective) affine function g(y) = Ay + b,y ∈ Rd. Finally, for a
twice differentiable function h : Rd → R, let Nh : Rd → Rd denote the Newton step
for h, i.e.

Nh(x) := x−∇2h(x)−1∇h(x),

whenever this is defined. Then we have Nf◦g = g−1 ◦Nf ◦ g.
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Affine Invariance
Newton step for f ◦ g on yt: transform yt to xt = g(yt), perform the Newton step for
f on x and transform the result xt+1 back to yt+1 = g−1(xt+1). This means, the
following diagram commutes:

yt yt+1

xt xt+1

Nf◦g

Nf

g g−1

Gradient descent suffers if coordinates are at different scales; Newton’s method doesn’t.
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Minimizing the second-order Taylor approximation

Alternative interpretation of Newton’s method:

Each step minimizes the local second-order Taylor approximation.

Lemma (Exercise 49)

Let f be convex and twice differentiable at xt ∈ dom(f), with ∇2f(xt) � 0 being
invertible. The vector xt+1 resulting from the Netwon step satisfies

xt+1 = argmin
x∈Rd

f(xt) +∇f(xt)
>(x− xt) +

1

2
(x− xt)

>∇2f(xt)(x− xt).
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Local Convergence

We will prove: under suitable conditions, and starting close to the global minimum,
Newton’s method will reach distance at most ε to the minimum within log log(1/ε)
steps.

I much faster than anything we have seen so far. . .

I . . . but we need to start close to the minimum already.

This is a local convergence result.

Global convergence results that hold for every starting point were unknown for
Newton’s method until very recently [KSJ18].

EPFL Optimization for Machine Learning CS-439 13/33



Once you’re close, you’re there. . .
Theorem

Let f : dom(f)→ R be convex with a unique global minimum x?. Suppose there is a
ball X ⊆ dom(f) with center x?, s.t.

(i) Bounded inverse Hessians: There exists a real number µ > 0 such that

‖∇2f(x)−1‖ ≤ 1

µ
, ∀x ∈ X.

(ii) Lipschitz continuous Hessians: There exists a real number B ≥ 0 such that

‖∇2f(x)−∇2f(y)‖ ≤ B‖x− y‖ ∀x,y ∈ X.

Then, for xt ∈ X and xt+1 resulting from the Newton step, we have

‖xt+1 − x?‖ ≤ B

2µ
‖xt − x?‖2.
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Super-exponentially fast

Corollary (Exercise 47)

With the assumptions and terminology of the convergence theorem, and if

‖x0 − x?‖ ≤ µ

B
,

then Newton’s method yields

‖xT − x?‖ ≤ µ

B

(
1

2

)2T−1
, T ≥ 0.

Starting close to the global minimum, we will reach distance at most ε to the
minimum within O

(
log log(1/ε)

)
steps.

Bound as for the last phase of the Babylonian method.
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Super-exponentially fast — intuitive reason

Almost constant Hessians close to optimality. . .

. . . so f behaves almost like a quadratic function which has truly constant Hessians
and allows Newton’s method to convergence in one step.

Lemma (Exercise 48)

With the assumptions and terminology of the convergence theorem, and if x0 ∈ X
satisfies

‖x0 − x?‖ ≤ µ

B
,

then the Hessians in Newton’s method satisfy the relative error bound∥∥∇2f(xt)−∇f2(x?)
∥∥

‖∇f2(x?)‖
≤
(

1

2

)2t−1
, t ≥ 0.
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Proof of convergence theorem
We abbreviate H := ∇2f , x = xt,x

′ = xt+1. Subtracting x? from both sides of the
Newton step definition:

x′ − x? = x− x? −H(x)−1∇f(x)

= x− x? +H(x)−1(∇f(x?)−∇f(x))

= x− x? +H(x)−1
∫ 1

0
H(x + t(x? − x))(x? − x)dt,

using the fundamental theorem of calculus∫ b

a
h′(t)dt = h(b)− h(a)

with

h(t) = ∇f(x + t(x? − x)),

h′(t) = ∇2f(x + t(x? − x))(x? − x).
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Proof of convergence theorem, II
We so far have

x′ − x? = x− x? +H(x)−1
∫ 1

0
H(x + t(x? − x))(x? − x)dt.

With
x− x? = H(x)−1H(x)(x− x?) = H(x)−1

∫ 1

0
−H(x)(x? − x)dt,

we further get

x′ − x? = H(x)−1
∫ 1

0

(
H(x + t(x? − x))−H(x)

)
(x? − x)dt.

Taking norms, we have

‖x′ − x?‖ ≤ ‖H(x)−1‖ ·
∥∥∥∥∫ 1

0

(
H(x + t(x? − x))−H(x)

)
(x? − x)dt

∥∥∥∥ ,
because ‖Ay‖ ≤ ‖A‖ · ‖y‖ for any A,y (by def. of spectral norm).
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Proof of convergence theorem, III
We so far have

‖x′ − x?‖ ≤ ‖H(x)−1‖ ·
∥∥∥∥∫ 1

0

(
H(x + t(x? − x))−H(x)

)
(x? − x)dt

∥∥∥∥
≤ ‖H(x)−1‖

∫ 1

0

∥∥(H(x + t(x?−x))−H(x)
)
(x?−x)

∥∥dt (Ex. 51)

≤ ‖H(x)−1‖
∫ 1

0

∥∥H(x + t(x?−x))−H(x)
∥∥ · ‖x?−x‖dt

= ‖H(x)−1‖ · ‖x?−x‖
∫ 1

0

∥∥H(x + t(x?−x))−H(x)
∥∥dt.

We can now use the properties (i) and (ii) (bounded inverse Hessians, Lipschitz
continuous Hessians) to conclude that

‖x′ − x?‖ ≤ 1

µ
‖x? − x‖

∫ 1

0
B‖t(x? − x)‖dt =

B

µ
‖x? − x‖2

∫ 1

0
tdt︸ ︷︷ ︸

1/2

=
B

2µ
‖x− x?‖2.
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Strong convexity ⇒ Bounded inverse Hessians

One way to ensure bounded inverse Hessians is to require strong convexity over X.

Lemma (Exercise 52)

Let f : dom(f)→ R be twice differentiable and strongly convex with parameter µ
over an open convex subset X ⊆ dom(f) meaning that

f(y) ≥ f(x) +∇f(x)>(y − x) +
µ

2
‖x− y‖2, ∀x,y ∈ X.

Then ∇2f(x) is invertible and ‖∇2f(x)−1‖ ≤ 1/µ for all x ∈ X, where ‖ · ‖ is the
spectral norm.
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Downside of Newton’s method

Computational bottleneck in each step:

I compute and invert the Hessian matrix

I or solve the linear system ∇2f(xt)∆x = −∇f(xt) for the next step ∆x.

Matrix / system has size d× d, taking up to O(d3) time to invert / solve.

In many applications, d is large. . .

EPFL Optimization for Machine Learning CS-439 21/33



The secant method
Another iterative method for finding zeros in dimension 1

Start from Newton-Raphson step

xt+1 := xt −
f(xt)

f ′(xt)
,

Use finite difference approximation of f ′(xt):

f ′(xt) ≈
f(xt)− f(xt−1)

xt − xt−1
.

(for |xt − xt−1| small)

Obtain the secant method:

xt+1 := xt − f(xt)
xt − xt−1

f(xt)− f(xt−1)
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The secant method II

xt xt+1

f(x)

xt−1

I construct the line through the two points (xt−1, f(xt−1)) and (xt, f(xt));
I next iterate xt+1 is where this line intersects the x-axis (Exercise 53)
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The secant method III

We now have a derivative-free version of the Newton-Raphson method.

Secant method for optimization: Can we also optimize a differentiable univariate
function f?— Yes, apply the secant method to f ′:

xt+1 := xt − f ′(xt)
xt − xt−1

f ′(xt)− f ′(xt−1)

I a second-derivative-free version of Newton’s method for optimization.

Can we generalize this to higher dimensions to obtain a Hessian-free version of
Newton’s method on Rd?
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The secant condition
Apply finite difference approximation to f ′′ (still 1-dim),

Ht :=
f ′(xt)− f ′(xt−1)

xt − xt−1
≈ f ′′(xt)

⇔
f ′(xt)− f ′(xt−1) = Ht(xt − xt−1),

the secant condition.

I Newton’s method: xt+1 := xt − f ′′(xt)−1f ′(xt)
I Secant method: xt+1 := xt −H−1t f ′(xt)

In higher dimensions: Let Ht ∈ Rd×d be a symmetric matrix satisfying the
d-dimensional secant condition

∇f(xt)−∇f(xt−1) = Ht(xt − xt−1).

The secant method step then becomes

xt+1 := xt −H−1t ∇f(xt). (1)
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Quasi-Newton methods

Newton: xt+1 := xt −∇2f(xt)
−1∇f(xt)

Secant xt+1 := xt −H−1t ∇f(xt),where ∇f(xt)−∇f(xt−1) = Ht(xt − xt−1)

If f is twice differentiable, secant condition and first-order approximation of ∇f(x) at
xt yield:

∇f(xt)−∇f(xt−1) = Ht(xt − xt−1) ≈ ∇2f(xt)(xt − xt−1).

Might therefore hope that Ht ≈ ∇2f(xt). . .
. . . meaning that the secant method approximates Newton’s method.

I d = 1: unique number Ht satisfying the secant condition
I d > 1: Secant condition ∇f(xt)−∇f(xt−1) = Ht(xt − xt−1) has infinitely many

symmetric solutions Ht (underdetermined linear system).

Any scheme of choosing in each step of the secant method a symmetric Ht that
satisfies the secant condition defines a Quasi-Newton method.
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Quasi-Newton methods II
I Exercise 54: Newton’s method is a Quasi-Newton method if and only if f is a

nondegenerate quadratic function.
I Hence, Quasi-Newton methods do not generalize Newton’s method but form a

family of related algorithms.
I The first Quasi-Newton method was developed by William C. Davidon in 1956; he

desperately needed iterations that were faster than those of Newton’s method in
order obtain results in the short time spans between expected failures of the
room-sized computer that he used to run his computations on.

I But the paper he wrote about his new method got rejected for lacking a
convergence analysis, and for allegedly dubious notation. It became a very
influential Technical Report in 1959 [Dav59] and was finally officially published in
1991, with a foreword giving the historical context [Dav91]. Ironically,
Quasi-Newton methods are today the methods of choice in a number of relevant
machine learning applications.

I Here: no convergence analysis (for a change), we focus on development of
algorithms from first principles.

EPFL Optimization for Machine Learning CS-439 27/33



Developing a Quasi-Newton method

For efficieny reasons (want to avoid matrix inversions!), directly deal with the inverse
matrices H−1t .

Given: iterates xt−1,xt as well as the matrix H−1t−1.

Wanted: next matrix H−1t needed in next Quasi-Newton step

xt+1 := xt −H−1t ∇f(xt).

How should we choose H−1t ?

Newton’s method: ∇f2(xt) fluctuates only very little in the region of extremely fast
convergence.

Hence, in a Quasi-Newton method, it also makes sense to have that Ht ≈ Ht−1, or
H−1t ≈ H−1t−1.
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Greenstadt’s family of Quasi-Newton methods
Given: iterates xt−1,xt as well as the matrix H−1t−1.

Wanted: next matrix H−1t needed in next Quasi-Newton step

xt+1 := xt −H−1t ∇f(xt).

Greenstadt [Gre70]: Update
H−1t := H−1t−1 + Et,

Et an error matrix.

Try to minimize the errror subject to Ht satisfying the secant condition!

Simple error measure: Frobenius norm

‖E‖2F :=

d∑
i=1

d∑
j=1

E2
ij .
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Greenstadt’s family of Quasi-Newton methods II

Greenstadt: minimizing ‖E‖F gives just one method, this is “too specialized”.

Greenstadt searched for a compromise between variability in the method and simplicity
of the resulting formulas.

More general error measure
‖AEA>‖2F ,

where A ∈ Rd×d is some fixed invertible transformation matrix.

A = I: squared Frobenius norm of E, the “specialized” method.
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The Greenstadt Update H−1
t−1 → H−1

t
Secant condition in terms of H−1t :

H−1t (∇f(xt)−∇f(xt−1)) = (xt − xt−1).

Fix t and simplify notation:

H := H−1t−1 (old inverse)

H ′ := H−1t (new inverse)
E := Et, (error matrix)
σ := xt − xt−1 (step in solutions)
y = ∇f(xt)−∇f(xt−1) (step in gradients)
r = σ −Hy (error of old inverse in secant condition)

The update formula is
H ′ = H + E,

Secant condition becomes
H ′y = σ (⇔ Ey = r).
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The Greenstadt Update H−1
t−1 → H−1

t II

Minimizing the error becomes a convex constrained minimization problem in the d2

variables Eij :

minimize 1
2‖AEA

>‖2F (error function)
subject to Ey = r (secant condition)

E> − E = 0 (symmetry)

Don’t need to solve it computationally (for numbers Eij) . . .

. . . but mathematically (formula for E)

Minimize convex quadratic function subject to linear equations → analytic formula for
the minimizer from the method of Lagrange multipliers.
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