-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_dataset.py
446 lines (384 loc) · 16.7 KB
/
generate_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
"""
This script generates images from a pre-trained model.
Example usage:
python generate_dataset.py --out_path ./gen_data --num_images 10
This script will generate images from the pre-trained model and save them to the --out_path directory.
The output_path directory will have the following structure:
output_path
├── init_images
│ ├── 0.png
│ ├── 1.png
├── masks
├── bev or spin
├── final_images
├── spin_gt.pkl
"""
import argparse
import random, os, sys
import pickle
import cv2
from loguru import logger
import numpy as np
import PIL
import torch
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
from diffusers import StableDiffusionPipeline
from d2i_pipeline import MyPipeline as StableDiffusionDepth2ImgPipeline
from img_utils import image_grid, prepare_image
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"--num_inference_steps",
type=int,
default=50,
help="the number of inference steps to take"
)
parser.add_argument(
"--use_real_guide",
action="store_true",
help="whether to use real guide images. If so, the guide images should be in the --out_path/init_images directory."
)
parser.add_argument(
"--real_guidance_action",
type=str,
default="ski",
choices=["ski", "polevault", "highjump", "balancebeam", "vault", "unevenbars", "diving"],
)
parser.add_argument(
"--rg_num_samples",
type=int,
default=200,
help="the number of real guide images to use. [!!!Only used for ski.]"
)
parser.add_argument(
"--use_random_latents_for_human",
action="store_true",
help="whether to use random latents for the human body."
)
parser.add_argument(
"--apply_pose_aug",
action="store_true",
help="whether to apply pose augmentation."
)
parser.add_argument(
"--k",
type=int,
default=3,
help="the number of synthetic images to generate per (real) guide."
)
parser.add_argument(
"--hmr_method",
type=str,
default="spin",
choices=["spin", "bev"],
help="the method used for human pose estimation."
)
parser.add_argument(
"--add_blur",
action="store_true",
help="whether to add blur to the generated images."
)
parser.add_argument(
"--action",
type=str,
default="doing pole vaulting",
help="the text that will be used in prompt template such as `a person {action}`."
)
parser.add_argument(
"--out_path",
type=str,
default="./",
required=True,
help="the path to save the output image"
)
parser.add_argument(
"--num_images",
type=int,
default=10,
help="the number of images to generate. Not used if --use_real_guide is True."
)
parser.add_argument(
"--num_opt_cycles",
type=int,
default=0,
help="the number of optimization cycles to run"
)
parser.add_argument(
"--strength",
type=float,
default=0.7,
help="the strenght for the depth2img generation phase"
)
args = parser.parse_args()
return args
prompt_template = [
'a picture of an athlete {}',
'a photo of an athlete {}',
'a low resolution picture of a person {}',
'a blurry image of an athlete {}',
'a nice shot of a person {}',
'a side shot of a person {}',
'a high speed shot of a person {}',
'a slow motion shot of a person {}',
]
def sample_prompt(action):
template_idx= random.choice(range(len(prompt_template)))
prompt = prompt_template[template_idx].format(action)
logger.info(f"Prompt: {prompt}")
return template_idx, prompt
def generate_images(args, pipe, out_folder_name):
logger.info("Generating images...")
prompts = [sample_prompt(args.action) for _ in range(args.num_images)]
out_path = os.path.join(args.out_path, out_folder_name)
num_images = 1
n_prompt = "deformed, bad anatomy"
for i in range(0, len(prompts)):
prompt_idx, prompt = prompts[i]
images = pipe(
[prompt],
guidance_scale = 7.5,
num_inference_steps = args.num_inference_steps,
num_images_per_prompt = num_images,
negative_prompt = n_prompt
)
best_image = images.images[0]
best_image.save(os.path.join(out_path, f"{i}.png"))
def run_maskrcnn(args, in_folder_name, out_folder_name, mask_out_best_person_only=False):
logger.info("Running MaskRCNN...")
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
predictor = DefaultPredictor(cfg)
in_path = os.path.join(args.out_path, in_folder_name)
out_path = os.path.join(args.out_path, out_folder_name)
for filename in os.listdir(in_path):
im = cv2.imread(os.path.join(in_path, filename))
if im is None:
continue
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
is_person = (outputs["instances"].pred_classes == 0).cpu().numpy()
is_person = np.where(is_person)[0]
if len(is_person) == 0:
# no person is detected.
continue
if mask_out_best_person_only:
best_person_idx = np.argmax(outputs["instances"].scores[is_person].cpu().numpy())
mask = outputs["instances"].pred_masks[best_person_idx].cpu().numpy()
else:
mask = np.zeros_like(outputs["instances"].pred_masks[0].cpu().numpy())
for idx in is_person:
mask += outputs["instances"].pred_masks[idx].cpu().numpy()
mask = mask > 0
PIL.Image.fromarray(mask).save(os.path.join(out_path, filename))
# PIL.Image.fromarray(out.get_image()[:, :, ::-1]).save(os.path.join(out_path, 'vis_' + filename))
def get_random_latents(generator, device):
latents = None
seeds = []
for _ in range(1):
# Get a new random seed, store it and use it as the generator state
seed = generator.seed()
seeds.append(seed)
generator = generator.manual_seed(seed)
image_latents = torch.randn(
(1, 4, 512 // 8, 512 // 8),
generator = generator,
device = device
)
latents = image_latents if latents is None else torch.cat((latents, image_latents))
# latents should have shape (num_images, 4, 64, 64) in this case
return latents
def generate_images_with_depth_prior(args, pipe, init_images_folder_name, mask_folder_name,
smpl_depth_folder_name, out_folder_name, save_grid=False):
logger.info("Generating images with depth prior...")
init_image_path = os.path.join(args.out_path, init_images_folder_name)
init_mask_path = os.path.join(args.out_path, mask_folder_name)
smpl_depth_path = os.path.join(args.out_path, smpl_depth_folder_name)
out_path = os.path.join(args.out_path, out_folder_name)
img_size = 512
depth_size = 64
files = os.listdir(smpl_depth_path)
for hmr_depth_file_name in files:
file_name, file_ext = os.path.splitext(hmr_depth_file_name)
if file_name.endswith('_grid'): continue
file_parts = file_name.split('_')
file_name = '_'.join(file_parts[:-1])
sample_idx = int(file_parts[-1])
original_file_name = file_name + file_ext
if os.path.exists(os.path.join(out_path, f'{file_name}_{sample_idx}.png')):
continue
depth_path = os.path.join(smpl_depth_path, hmr_depth_file_name)
image_path = os.path.join(init_image_path, original_file_name)
mask_path = os.path.join(init_mask_path, original_file_name)
try:
depth_map = PIL.Image.open(depth_path).convert('L')
depth_map_small = depth_map.resize((depth_size, depth_size))
except:
logger.info(f"{depth_path} does not exist.")
continue
try:
mask = PIL.Image.open(mask_path).convert('L').resize((depth_size, depth_size))
except:
logger.info(f"{mask_path} does not exist.")
continue
depth_map = torch.from_numpy(np.array(depth_map)).to(device=pipe.device, dtype=torch_dtype).unsqueeze(0)
# depth_map *= 2
image = PIL.Image.open(image_path).convert('RGB')
image = image.resize((img_size, img_size))
mask = np.array(mask) / 255.
# merge with depth map.
depth_map = (depth_map.max() + 50 - depth_map ) * (depth_map > 0).float()
foreground = (np.array(depth_map_small) > 0).astype(np.float32)
mask = ((mask + foreground) > 0).astype(np.float32)
mask = torch.from_numpy(mask).to(device=pipe.device, dtype=torch_dtype).unsqueeze(0).unsqueeze(0)
generator = torch.Generator(device=device)
with torch.autocast(device):
# n_prompt = "bad, deformed, ugly, bad anatomy" # from the depth2image tutorial.
n_prompt = "deformed, bad anatomy"
_, prompt = sample_prompt(args.action)
random_latents = get_random_latents(generator, device)
image_in = prepare_image(image).to(device=device, dtype=torch_dtype) # [1, 3, 512, 512]
image_latents = pipe.vae.encode(image_in).latent_dist.sample(generator=generator)
image_latents *= pipe.scheduler.init_noise_sigma * 0.18215 # magic number
if not args.use_random_latents_for_human:
combined_latents = image_latents
else:
combined_latents = image_latents * (1 - mask) + random_latents * mask
images, _ = pipe(
prompt=prompt,
image=image,
latents=combined_latents,
guidance_scale = 7.5,
num_inference_steps = args.num_inference_steps,
depth_map = depth_map,
negative_prompt=n_prompt,
strength=args.strength,
generator=generator
)
out_image = images.images[0]
if args.add_blur:
blur_radius = np.random.uniform(1., 2.5)
out_image = out_image.filter(PIL.ImageFilter.GaussianBlur(radius=blur_radius))
if save_grid:
out_grid_image = image_grid([
image, PIL.Image.open(depth_path).convert('L').resize((img_size, img_size)), out_image
], 1, 3)
out_grid_image.save(os.path.join(out_path, f'{file_name}_{sample_idx}_grid.png'))
out_image.save(os.path.join(out_path, f'{file_name}_{sample_idx}.png'))
# PIL.Image.fromarray(depth_array).convert('L').save(os.path.join(out_path, f'depth_{file_name}'))
return
def get_depth_pipeline(device):
torch_dtype = torch.float16
depth_pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth",
revision="fp16",
torch_dtype=torch_dtype,
use_auth_token=False
).to(device)
return depth_pipe
def get_pipeline(device):
torch_dtype = torch.float16
pipe = StableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4',
revision="fp16",
torch_dtype=torch_dtype,
use_auth_token=False
).to(device)
return pipe
if __name__ == "__main__":
args = parse_arguments()
print(args)
device = "cuda"
for subfoler in ['init_images', 'masks', 'final_images']:
os.makedirs(os.path.join(args.out_path, subfoler), exist_ok=True)
torch_dtype = torch.float16 # this could fit in a 12 GB GPU.
if not args.use_real_guide:
pipe = get_pipeline(device)
# 1. Generate images without depth prior
generate_images(args, pipe, 'init_images')
else:
from downstream_utils.prepare_real_guidance import (
write_ski_images, write_gymnastics, write_polevault_or_highjump,
write_diving
)
# 1. Write real image as guidance to generate synthetic images.
if args.real_guidance_action == 'ski':
write_ski_images(args.out_path, args.rg_num_samples)
elif args.real_guidance_action in ['polevault', 'highjump']:
write_polevault_or_highjump(args.out_path, action=args.real_guidance_action)
elif args.real_guidance_action in ['balancebeam', 'vault', 'unevenbars']:
write_gymnastics(args.out_path, action=args.real_guidance_action)
elif args.real_guidance_action == 'diving':
write_diving(args.out_path)
else:
# TODO: implement other gymnastics actions
raise NotImplementedError(f'Action {args.real_guidance_action} not implemented')
# 2. Generate masks and depth maps
run_maskrcnn(args, 'init_images', 'masks')
torch.cuda.empty_cache()
pipe = get_depth_pipeline(device)
# 3. Generate images with depth prior
if args.hmr_method == 'spin':
dapa_path = './external/DAPA_release'
sys.path.append(dapa_path)
from hmr_utils import SPIN_wrapper
out_folder_name = 'spin'
os.makedirs(os.path.join(args.out_path, out_folder_name), exist_ok=True)
runner = SPIN_wrapper('external/DAPA_release/data/model_checkpoint.pt', 'cuda')
annotations = runner.inference(
args, 'init_images', out_folder_name, apply_pose_aug=args.apply_pose_aug, num_aug_samples=args.k,
save_grid=False, move_person_to_center=not args.use_real_guide)
with open(os.path.join(args.out_path, 'spin_gt.pkl'), 'wb+') as f:
pickle.dump(annotations, f)
elif args.hmr_method == 'bev':
from bev_utils import run_bev
out_folder_name = 'bev'
os.makedirs(os.path.join(args.out_path, out_folder_name), exist_ok=True)
os.makedirs(os.path.join(args.out_path, f'{out_folder_name}_npz'), exist_ok=True)
run_bev(args, 'init_images', out_folder_name, apply_pose_aug=args.apply_pose_aug)
generate_images_with_depth_prior(
args, pipe, 'init_images', 'masks', out_folder_name, 'final_images', save_grid=args.num_opt_cycles < 1)
if args.hmr_method == 'bev':
sys.exit(0) # Done here. No need to run the rest of the code.
# runner.finetune('spin_gt.pkl', generation_path=args.out_path, image_folder='final_images', num_epochs=20)
for iter in range(1, args.num_opt_cycles+1):
for subfoler in [f'init_images_iter{iter}', f'masks_iter{iter}',
f'{out_folder_name}_iter{iter}', f'final_images_iter{iter}']:
os.makedirs(os.path.join(args.out_path, subfoler), exist_ok=True)
save_grid = iter == args.num_opt_cycles
hmr_folder = f'{out_folder_name}_iter{iter}'
final_images_folder = f'final_images_iter{iter}'
if not args.use_real_guide:
init_images_folder = f'init_images_iter{iter}'
masks_folder = f'masks_iter{iter}'
pipe = get_pipeline()
generate_images(args, pipe, init_images_folder)
run_maskrcnn(args, init_images_folder, masks_folder)
torch.cuda.empty_cache()
else:
init_images_folder = 'init_images'
masks_folder = 'masks'
if args.hmr_method == 'spin':
annotations = runner.inference(
args, init_images_folder, hmr_folder, apply_pose_aug=args.apply_pose_aug,
num_aug_samples=args.k, save_grid=save_grid, move_person_to_center=False)
with open(os.path.join(args.out_path, f'spin_gt_iter{iter}.pkl'), 'wb+') as f:
pickle.dump(annotations, f)
elif args.hmr_method == 'bev':
run_bev(args, init_images_folder, hmr_folder, apply_pose_aug=args.apply_pose_aug)
else:
raise NotImplementedError(f'HMR method {args.hmr_method} not implemented')
pipe = get_depth_pipeline()
generate_images_with_depth_prior(
args, pipe, init_images_folder, masks_folder,
hmr_folder, final_images_folder, save_grid)
if iter < args.num_opt_cycles:
runner.finetune(
annot_name=f'spin_gt_iter{iter}.pkl', generation_path=args.out_path,
image_folder=final_images_folder, num_epochs=20)