forked from Azure-Samples/azure-search-openai-demo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepdocs.py
315 lines (286 loc) · 16.1 KB
/
prepdocs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os
import argparse
import glob
import html
import io
import re
import time
from pypdf import PdfReader, PdfWriter
from azure.identity import AzureDeveloperCliCredential
from azure.core.credentials import AzureKeyCredential
from azure.storage.blob import BlobServiceClient
from azure.search.documents.indexes import SearchIndexClient
from azure.search.documents.indexes.models import *
from azure.search.documents import SearchClient
from azure.ai.formrecognizer import DocumentAnalysisClient
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
parser = argparse.ArgumentParser(
description="Prepare documents by extracting content from PDFs, splitting content into sections, uploading to blob storage, and indexing in a search index.",
epilog="Example: prepdocs.py '..\data\*' --storageaccount myaccount --container mycontainer --searchservice mysearch --index myindex -v"
)
parser.add_argument("files", help="Files to be processed")
parser.add_argument("--category", help="Value for the category field in the search index for all sections indexed in this run")
parser.add_argument("--skipblobs", action="store_true", help="Skip uploading individual pages to Azure Blob Storage")
parser.add_argument("--storageaccount", help="Azure Blob Storage account name")
parser.add_argument("--container", help="Azure Blob Storage container name")
parser.add_argument("--storagekey", required=False, help="Optional. Use this Azure Blob Storage account key instead of the current user identity to login (use az login to set current user for Azure)")
parser.add_argument("--tenantid", required=False, help="Optional. Use this to define the Azure directory where to authenticate)")
parser.add_argument("--searchservice", help="Name of the Azure Cognitive Search service where content should be indexed (must exist already)")
parser.add_argument("--index", help="Name of the Azure Cognitive Search index where content should be indexed (will be created if it doesn't exist)")
parser.add_argument("--searchkey", required=False, help="Optional. Use this Azure Cognitive Search account key instead of the current user identity to login (use az login to set current user for Azure)")
parser.add_argument("--remove", action="store_true", help="Remove references to this document from blob storage and the search index")
parser.add_argument("--removeall", action="store_true", help="Remove all blobs from blob storage and documents from the search index")
parser.add_argument("--localpdfparser", action="store_true", help="Use PyPdf local PDF parser (supports only digital PDFs) instead of Azure Form Recognizer service to extract text, tables and layout from the documents")
parser.add_argument("--formrecognizerservice", required=False, help="Optional. Name of the Azure Form Recognizer service which will be used to extract text, tables and layout from the documents (must exist already)")
parser.add_argument("--formrecognizerkey", required=False, help="Optional. Use this Azure Form Recognizer account key instead of the current user identity to login (use az login to set current user for Azure)")
parser.add_argument("--verbose", "-v", action="store_true", help="Verbose output")
args = parser.parse_args()
# Use the current user identity to connect to Azure services unless a key is explicitly set for any of them
azd_credential = AzureDeveloperCliCredential() if args.tenantid == None else AzureDeveloperCliCredential(tenant_id=args.tenantid, process_timeout=60)
default_creds = azd_credential if args.searchkey == None or args.storagekey == None else None
search_creds = default_creds if args.searchkey == None else AzureKeyCredential(args.searchkey)
if not args.skipblobs:
storage_creds = default_creds if args.storagekey == None else args.storagekey
if not args.localpdfparser:
# check if Azure Form Recognizer credentials are provided
if args.formrecognizerservice == None:
print("Error: Azure Form Recognizer service is not provided. Please provide formrecognizerservice or use --localpdfparser for local pypdf parser.")
exit(1)
formrecognizer_creds = default_creds if args.formrecognizerkey == None else AzureKeyCredential(args.formrecognizerkey)
def blob_name_from_file_page(filename, page = 0):
if os.path.splitext(filename)[1].lower() == ".pdf":
return os.path.splitext(os.path.basename(filename))[0] + f"-{page}" + ".pdf"
else:
return os.path.basename(filename)
def upload_blobs(filename):
blob_service = BlobServiceClient(account_url=f"https://{args.storageaccount}.blob.core.windows.net", credential=storage_creds)
blob_container = blob_service.get_container_client(args.container)
if not blob_container.exists():
blob_container.create_container()
# if file is PDF split into pages and upload each page as a separate blob
if os.path.splitext(filename)[1].lower() == ".pdf":
reader = PdfReader(filename)
pages = reader.pages
for i in range(len(pages)):
blob_name = blob_name_from_file_page(filename, i)
if args.verbose: print(f"\tUploading blob for page {i} -> {blob_name}")
f = io.BytesIO()
writer = PdfWriter()
writer.add_page(pages[i])
writer.write(f)
f.seek(0)
blob_container.upload_blob(blob_name, f, overwrite=True)
else:
blob_name = blob_name_from_file_page(filename)
with open(filename,"rb") as data:
blob_container.upload_blob(blob_name, data, overwrite=True)
def remove_blobs(filename):
if args.verbose: print(f"Removing blobs for '{filename or '<all>'}'")
blob_service = BlobServiceClient(account_url=f"https://{args.storageaccount}.blob.core.windows.net", credential=storage_creds)
blob_container = blob_service.get_container_client(args.container)
if blob_container.exists():
if filename == None:
blobs = blob_container.list_blob_names()
else:
prefix = os.path.splitext(os.path.basename(filename))[0]
blobs = filter(lambda b: re.match(f"{prefix}-\d+\.pdf", b), blob_container.list_blob_names(name_starts_with=os.path.splitext(os.path.basename(prefix))[0]))
for b in blobs:
if args.verbose: print(f"\tRemoving blob {b}")
blob_container.delete_blob(b)
def table_to_html(table):
table_html = "<table>"
rows = [sorted([cell for cell in table.cells if cell.row_index == i], key=lambda cell: cell.column_index) for i in range(table.row_count)]
for row_cells in rows:
table_html += "<tr>"
for cell in row_cells:
tag = "th" if (cell.kind == "columnHeader" or cell.kind == "rowHeader") else "td"
cell_spans = ""
if cell.column_span > 1: cell_spans += f" colSpan={cell.column_span}"
if cell.row_span > 1: cell_spans += f" rowSpan={cell.row_span}"
table_html += f"<{tag}{cell_spans}>{html.escape(cell.content)}</{tag}>"
table_html +="</tr>"
table_html += "</table>"
return table_html
def get_document_text(filename):
offset = 0
page_map = []
if args.localpdfparser:
reader = PdfReader(filename)
pages = reader.pages
for page_num, p in enumerate(pages):
page_text = p.extract_text()
page_map.append((page_num, offset, page_text))
offset += len(page_text)
else:
if args.verbose: print(f"Extracting text from '{filename}' using Azure Form Recognizer")
form_recognizer_client = DocumentAnalysisClient(endpoint=f"https://{args.formrecognizerservice}.cognitiveservices.azure.com/", credential=formrecognizer_creds, headers={"x-ms-useragent": "azure-search-chat-demo/1.0.0"})
with open(filename, "rb") as f:
poller = form_recognizer_client.begin_analyze_document("prebuilt-layout", document = f)
form_recognizer_results = poller.result()
for page_num, page in enumerate(form_recognizer_results.pages):
tables_on_page = [table for table in form_recognizer_results.tables if table.bounding_regions[0].page_number == page_num + 1]
# mark all positions of the table spans in the page
page_offset = page.spans[0].offset
page_length = page.spans[0].length
table_chars = [-1]*page_length
for table_id, table in enumerate(tables_on_page):
for span in table.spans:
# replace all table spans with "table_id" in table_chars array
for i in range(span.length):
idx = span.offset - page_offset + i
if idx >=0 and idx < page_length:
table_chars[idx] = table_id
# build page text by replacing charcters in table spans with table html
page_text = ""
added_tables = set()
for idx, table_id in enumerate(table_chars):
if table_id == -1:
page_text += form_recognizer_results.content[page_offset + idx]
elif not table_id in added_tables:
page_text += table_to_html(tables_on_page[table_id])
added_tables.add(table_id)
page_text += " "
page_map.append((page_num, offset, page_text))
offset += len(page_text)
return page_map
def split_text(page_map):
SENTENCE_ENDINGS = [".", "!", "?"]
WORDS_BREAKS = [",", ";", ":", " ", "(", ")", "[", "]", "{", "}", "\t", "\n"]
if args.verbose: print(f"Splitting '{filename}' into sections")
def find_page(offset):
l = len(page_map)
for i in range(l - 1):
if offset >= page_map[i][1] and offset < page_map[i + 1][1]:
return i
return l - 1
all_text = "".join(p[2] for p in page_map)
length = len(all_text)
start = 0
end = length
while start + SECTION_OVERLAP < length:
last_word = -1
end = start + MAX_SECTION_LENGTH
if end > length:
end = length
else:
# Try to find the end of the sentence
while end < length and (end - start - MAX_SECTION_LENGTH) < SENTENCE_SEARCH_LIMIT and all_text[end] not in SENTENCE_ENDINGS:
if all_text[end] in WORDS_BREAKS:
last_word = end
end += 1
if end < length and all_text[end] not in SENTENCE_ENDINGS and last_word > 0:
end = last_word # Fall back to at least keeping a whole word
if end < length:
end += 1
# Try to find the start of the sentence or at least a whole word boundary
last_word = -1
while start > 0 and start > end - MAX_SECTION_LENGTH - 2 * SENTENCE_SEARCH_LIMIT and all_text[start] not in SENTENCE_ENDINGS:
if all_text[start] in WORDS_BREAKS:
last_word = start
start -= 1
if all_text[start] not in SENTENCE_ENDINGS and last_word > 0:
start = last_word
if start > 0:
start += 1
section_text = all_text[start:end]
yield (section_text, find_page(start))
last_table_start = section_text.rfind("<table")
if (last_table_start > 2 * SENTENCE_SEARCH_LIMIT and last_table_start > section_text.rfind("</table")):
# If the section ends with an unclosed table, we need to start the next section with the table.
# If table starts inside SENTENCE_SEARCH_LIMIT, we ignore it, as that will cause an infinite loop for tables longer than MAX_SECTION_LENGTH
# If last table starts inside SECTION_OVERLAP, keep overlapping
if args.verbose: print(f"Section ends with unclosed table, starting next section with the table at page {find_page(start)} offset {start} table start {last_table_start}")
start = min(end - SECTION_OVERLAP, start + last_table_start)
else:
start = end - SECTION_OVERLAP
if start + SECTION_OVERLAP < end:
yield (all_text[start:end], find_page(start))
def create_sections(filename, page_map):
for i, (section, pagenum) in enumerate(split_text(page_map)):
yield {
"id": re.sub("[^0-9a-zA-Z_-]","_",f"{filename}-{i}"),
"content": section,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename
}
def create_search_index():
if args.verbose: print(f"Ensuring search index {args.index} exists")
index_client = SearchIndexClient(endpoint=f"https://{args.searchservice}.search.windows.net/",
credential=search_creds)
if args.index not in index_client.list_index_names():
index = SearchIndex(
name=args.index,
fields=[
SimpleField(name="id", type="Edm.String", key=True),
SearchableField(name="content", type="Edm.String", analyzer_name="en.microsoft"),
SimpleField(name="category", type="Edm.String", filterable=True, facetable=True),
SimpleField(name="sourcepage", type="Edm.String", filterable=True, facetable=True),
SimpleField(name="sourcefile", type="Edm.String", filterable=True, facetable=True)
],
semantic_settings=SemanticSettings(
configurations=[SemanticConfiguration(
name='default',
prioritized_fields=PrioritizedFields(
title_field=None, prioritized_content_fields=[SemanticField(field_name='content')]))])
)
if args.verbose: print(f"Creating {args.index} search index")
index_client.create_index(index)
else:
if args.verbose: print(f"Search index {args.index} already exists")
def index_sections(filename, sections):
if args.verbose: print(f"Indexing sections from '{filename}' into search index '{args.index}'")
search_client = SearchClient(endpoint=f"https://{args.searchservice}.search.windows.net/",
index_name=args.index,
credential=search_creds)
i = 0
batch = []
for s in sections:
batch.append(s)
i += 1
if i % 1000 == 0:
results = search_client.upload_documents(documents=batch)
succeeded = sum([1 for r in results if r.succeeded])
if args.verbose: print(f"\tIndexed {len(results)} sections, {succeeded} succeeded")
batch = []
if len(batch) > 0:
results = search_client.upload_documents(documents=batch)
succeeded = sum([1 for r in results if r.succeeded])
if args.verbose: print(f"\tIndexed {len(results)} sections, {succeeded} succeeded")
def remove_from_index(filename):
if args.verbose: print(f"Removing sections from '{filename or '<all>'}' from search index '{args.index}'")
search_client = SearchClient(endpoint=f"https://{args.searchservice}.search.windows.net/",
index_name=args.index,
credential=search_creds)
while True:
filter = None if filename == None else f"sourcefile eq '{os.path.basename(filename)}'"
r = search_client.search("", filter=filter, top=1000, include_total_count=True)
if r.get_count() == 0:
break
r = search_client.delete_documents(documents=[{ "id": d["id"] } for d in r])
if args.verbose: print(f"\tRemoved {len(r)} sections from index")
# It can take a few seconds for search results to reflect changes, so wait a bit
time.sleep(2)
if args.removeall:
remove_blobs(None)
remove_from_index(None)
else:
if not args.remove:
create_search_index()
print(f"Processing files...")
for filename in glob.glob(args.files):
if args.verbose: print(f"Processing '{filename}'")
if args.remove:
remove_blobs(filename)
remove_from_index(filename)
elif args.removeall:
remove_blobs(None)
remove_from_index(None)
else:
if not args.skipblobs:
upload_blobs(filename)
page_map = get_document_text(filename)
sections = create_sections(os.path.basename(filename), page_map)
index_sections(os.path.basename(filename), sections)