forked from fengzhang427/HEP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
NDM_train.py
111 lines (98 loc) · 4.81 KB
/
NDM_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import torch
import os
import sys
import shutil
import torch.backends.cudnn as cudnn
import argparse
import skimage.metrics
import numpy as np
from torch.utils.data import DataLoader
from utils import write_html, write_loss, get_config, write2images, get_all_data_loaders
from torch.utils.tensorboard import SummaryWriter
from models.LUM_model import DecomNet
from trainer import UNIT_Trainer
# parse options
parser = argparse.ArgumentParser(description='DenoiseNet args setting')
parser.add_argument('--denoise_config', type=str, default='configs/unit_NDM.yaml', help='Path to the config file.')
parser.add_argument('--light_config', type=str, default='configs/unit_LUM.yaml', help='Path to the config file.')
parser.add_argument('--output_path', type=str, default='./denoise', help="outputs path")
parser.add_argument("--resume", action="store_true")
parser.add_argument('--trainer', type=str, default='UNIT', help="UNIT")
parser.add_argument('--light_checkpoint', type=str, default='./checkpoints/LUM_LOL.pth',
help="checkpoint of light")
opts = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def main():
cudnn.benchmark = True
# load train setting
denoise_config = get_config(opts.denoise_config)
max_iter = denoise_config['max_iter']
display_size = denoise_config['display_size']
denoise_config['vgg_model_path'] = opts.output_path
# pre-trained model set
light_config = get_config(opts.light_config)
light = DecomNet(light_config)
state_dict = torch.load(opts.light_checkpoint, map_location='cpu')
light.load_state_dict(state_dict)
light.cuda()
light.eval()
# model set and data loader
trainer = UNIT_Trainer(denoise_config)
if torch.cuda.is_available():
trainer.cuda(denoise_config['gpuID'])
torch.nn.DataParallel(trainer)
train_loader_x, train_loader_y, test_loader_x, test_loader_y = get_all_data_loaders(denoise_config)
# set logger and output folder
writer = SummaryWriter(os.path.join(opts.output_path + "/logs"))
output_directory = os.path.join(opts.output_path + "/outputs")
# set checkpoint folder
checkpoint_directory = os.path.join(output_directory, 'checkpoints_denoise')
if not os.path.exists(checkpoint_directory):
print("Creating directory: {}".format(checkpoint_directory))
os.makedirs(checkpoint_directory)
# set image folder
image_directory = os.path.join(output_directory, 'images')
if not os.path.exists(image_directory):
print("Creating directory: {}".format(image_directory))
os.makedirs(image_directory)
# copy config file to output folder
shutil.copy(opts.denoise_config, os.path.join(output_directory, 'config_yaml'))
# start training
psnr = 0
ssim = 0
count = 0
print('start training')
iterations = trainer.resume(checkpoint_directory, hyperparameters=denoise_config) if opts.resume else 0
while True:
for it, (images_x, images_y, val_x, val_y) in enumerate(zip(train_loader_x, train_loader_y, test_loader_x, test_loader_y)):
dataX, dataY = images_x.cuda().detach(), images_y.cuda().detach()
valX, valY = val_x.cuda().detach(), val_y.cuda().detach()
dataX, _ = light(dataX)
# main training code
for _ in range(3):
trainer.content_update(dataX, dataY, denoise_config)
trainer.dis_update(dataX, dataY, denoise_config)
trainer.gen_update(dataX, dataY, denoise_config)
trainer.update_learning_rate()
# dump training stats in log file
if (iterations + 1) % denoise_config['log_iter'] == 0:
write_loss(iterations, trainer, writer)
if (iterations + 1) % denoise_config['image_save_iter'] == 0:
trainer.eval()
print("[*] Evaluating for phase train / epoch %d..." % (iterations + 1))
with torch.no_grad():
train_image_outputs = trainer.sample(dataX, dataY)
val_image_outputs = trainer.sample(valX, valY)
write2images(train_image_outputs, display_size, image_directory, 'train_%08d' % (iterations + 1))
write2images(val_image_outputs, display_size, image_directory, 'test_%08d' % (iterations + 1))
write_html(output_directory + "/index.html", iterations + 1, denoise_config['image_save_iter'],
'images')
print("===> Iteration[{}]: psnr: {}, ssim:{}".format(iterations + 1, psnr / count, ssim / count))
if (iterations + 1) % denoise_config['snapshot_save_iter'] == 0:
trainer.save(checkpoint_directory, iterations)
iterations += 1
if iterations >= max_iter:
writer.close()
sys.exit('Finish training')
if __name__ == '__main__':
main()