forked from fengzhang427/HEP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
292 lines (254 loc) · 14.3 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from models.NDM_model import MsImageDis, Dis_content, VAEGen
from utils import weights_init, get_model_list, vgg_preprocess, load_vgg19, get_scheduler
from torch.autograd import Variable
from torch.nn import functional as F
import torch
import torch.nn as nn
from models.GaussianSmoothLayer import GaussionSmoothLayer, GradientLoss
from models.loss import Exposure_control_loss, Color_constancy_loss
import os
##################################################################################
# UNIT
##################################################################################
class UNIT_Trainer(nn.Module):
def __init__(self, hyperparameters):
super(UNIT_Trainer, self).__init__()
lr = hyperparameters['lr']
# Initiate the networks
self.gen_x = VAEGen(hyperparameters['input_dim_x'], hyperparameters['gen']) # auto-encoder for domain x
self.gen_y = VAEGen(hyperparameters['input_dim_y'], hyperparameters['gen']) # auto-encoder for domain y
self.dis_x = MsImageDis(hyperparameters['input_dim_x'], hyperparameters['dis']) # discriminator for domain x
self.dis_y = MsImageDis(hyperparameters['input_dim_y'], hyperparameters['dis']) # discriminator for domain y
self.dis_content = Dis_content()
self.gpu_id = hyperparameters['gpuID']
# add background discriminator for each domain
self.instancenorm = nn.InstanceNorm2d(512, affine=False)
# Setup the optimizers
beta1 = hyperparameters['beta1']
beta2 = hyperparameters['beta2']
dis_params = list(self.dis_x.parameters()) + list(self.dis_y.parameters())
gen_params = list(self.gen_x.parameters()) + list(self.gen_y.parameters())
self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad],
lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay'])
self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad],
lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay'])
self.content_opt = torch.optim.Adam(self.dis_content.parameters(), lr=lr / 2., betas=(beta1, beta2),
weight_decay=hyperparameters['weight_decay'])
self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters)
self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters)
self.content_scheduler = get_scheduler(self.content_opt, hyperparameters)
# Network weight initialization
self.gen_x.apply(weights_init(hyperparameters['init']))
self.gen_y.apply(weights_init(hyperparameters['init']))
self.dis_x.apply(weights_init('gaussian'))
self.dis_y.apply(weights_init('gaussian'))
self.dis_content.apply(weights_init('gaussian'))
# initialize the blur network
self.BGBlur_kernel = [5, 9, 15]
self.BlurNet = [GaussionSmoothLayer(3, k_size, 25).cuda(self.gpu_id) for k_size in self.BGBlur_kernel]
self.BlurWeight = [0.25, 0.5, 1]
self.Gradient = GradientLoss(3, 3)
# # Load VGG model if needed for test
if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0:
self.vgg = load_vgg19(13)
if torch.cuda.is_available():
self.vgg.cuda(self.gpu_id)
self.vgg.eval()
for param in self.vgg.parameters():
param.requires_grad = False
def recon_criterion(self, image, target):
return torch.mean(torch.abs(image - target))
def forward(self, x, y):
self.eval()
cont_x = self.gen_x.encode_cont(x)
noise_x = self.gen_x.encode_noise(x)
cont_y = self.gen_y.encode_cont(y)
image_x2y = self.gen_y.decode_cont(cont_x)
h_cat = torch.cat((cont_y, noise_x), 1)
image_y2x = self.gen_x.decode_recs(h_cat)
self.train()
return image_x2y, image_y2x
def __compute_kl(self, mu):
# def compute_kl(self, mu, sd):
mu_2 = torch.pow(mu, 2)
encoding_loss = torch.mean(mu_2)
return encoding_loss
def content_update(self, x, y, hyperparameters): #
# encode
self.content_opt.zero_grad()
enc_x = self.gen_x.encode_cont(x)
enc_y = self.gen_y.encode_cont(y)
pred_fake = self.dis_content.forward(enc_x)
pred_real = self.dis_content.forward(enc_y)
if hyperparameters['gan_type'] == 'lsgan':
loss_D = torch.mean((pred_fake - 0) ** 2) + torch.mean((pred_real - 1) ** 2)
elif hyperparameters['gan_type'] == 'nsgan':
all0 = Variable(torch.zeros_like(pred_fake.data).cuda(self.gpu_id), requires_grad=False)
all1 = Variable(torch.ones_like(pred_real.data).cuda(self.gpu_id), requires_grad=False)
loss_D = torch.mean(F.binary_cross_entropy(F.sigmoid(pred_fake), all0) +
F.binary_cross_entropy(F.sigmoid(pred_real), all1))
else:
assert 0, "Unsupported GAN type: {}".format(hyperparameters['gan_type'])
loss_D.backward(retain_graph=True)
nn.utils.clip_grad_norm_(self.dis_content.parameters(), 5)
self.content_opt.step()
def gen_update(self, x, y, hyperparameters):
self.gen_opt.zero_grad()
self.content_opt.zero_grad()
# encode
cont_x = self.gen_x.encode_cont(x)
cont_y = self.gen_y.encode_cont(y)
noise_x = self.gen_x.encode_noise(y)
# decode (within domain)
h_x_cont = torch.cat((cont_x, noise_x), 1)
rand_x = torch.randn(h_x_cont.size()).cuda()
x_recon = self.gen_x.decode_recs(h_x_cont + rand_x)
rand_y = torch.randn(cont_y.size()).cuda()
y_recon = self.gen_y.decode_cont(cont_y + rand_y)
# decode (cross domain)
h_y2x_cont = torch.cat((cont_y, noise_x), 1)
image_y2x = self.gen_x.decode_recs(h_y2x_cont + rand_x)
image_x2y = self.gen_y.decode_cont(cont_x + rand_y)
# encode again
cont_y_recon = self.gen_x.encode_cont(image_y2x)
noise_x_recon = self.gen_x.encode_noise(image_y2x)
cont_x_recon = self.gen_y.encode_cont(image_x2y)
# decode again (if needed)
h_x_cat_recs = torch.cat((cont_x_recon, noise_x_recon), 1)
image_x2y2x = self.gen_x.decode_recs(h_x_cat_recs) if hyperparameters['recon_cyc_w'] > 0 else None
image_y2x2y = self.gen_y.decode_cont(cont_y_recon) if hyperparameters['recon_cyc_w'] > 0 else None
# reconstruction loss
self.loss_gen_recon_x = self.recon_criterion(x_recon, x)
self.loss_gen_recon_y = self.recon_criterion(y_recon, y)
self.loss_gen_recon_kl_noise = self.__compute_kl(noise_x)
self.loss_gen_cyc_x = self.recon_criterion(image_x2y2x, x) if image_x2y2x is not None else 0
self.loss_gen_cyc_y = self.recon_criterion(image_y2x2y, y) if image_y2x2y is not None else 0
self.loss_gen_recon_kl_cyc_noise = self.__compute_kl(noise_x_recon)
# GAN loss
self.loss_gen_adv_x = self.dis_x.calc_gen_loss(image_y2x)
self.loss_gen_adv_y = self.dis_y.calc_gen_loss(image_x2y)
# domain-invariant perceptual loss
self.loss_gen_vgg_x = self.compute_vgg_loss(self.vgg, image_y2x, y) if hyperparameters['vgg_w'] > 0 else 0
self.loss_gen_vgg_y = self.compute_vgg_loss(self.vgg, image_x2y, x) if hyperparameters['vgg_w'] > 0 else 0
# add background guide loss
self.loss_bgm = 0
if hyperparameters['BGM'] != 0:
for index, weight in enumerate(self.BlurWeight):
out_y = self.BlurNet[index](image_y2x)
out_real_y = self.BlurNet[index](y)
out_x = self.BlurNet[index](image_x2y)
out_real_x = self.BlurNet[index](x)
grad_loss_y = self.recon_criterion(out_y, out_real_y)
grad_loss_x = self.recon_criterion(out_x, out_real_x)
self.loss_bgm += weight * (grad_loss_x + grad_loss_y)
# add color constancy loss
L_color = Color_constancy_loss()
self.loss_color_x = torch.mean(L_color(image_x2y))
self.loss_color_y = torch.mean(L_color(image_y2x))
# total loss
self.loss_gen_total = hyperparameters['gan_w'] * self.loss_gen_adv_x + \
hyperparameters['gan_w'] * self.loss_gen_adv_y + \
hyperparameters['recon_w'] * self.loss_gen_recon_x + \
hyperparameters['recon_w'] * self.loss_gen_recon_y + \
hyperparameters['recon_kl_w'] * self.loss_gen_recon_kl_noise + \
hyperparameters['recon_cyc_w'] * self.loss_gen_cyc_x + \
hyperparameters['recon_cyc_w'] * self.loss_gen_cyc_y + \
hyperparameters['vgg_w'] * self.loss_gen_vgg_x + \
hyperparameters['vgg_w'] * self.loss_gen_vgg_y + \
hyperparameters['BGM'] * self.loss_bgm + \
hyperparameters['color'] * self.loss_color_x + \
hyperparameters['color'] * self.loss_color_y
self.loss_gen_total.backward()
self.gen_opt.step()
self.content_opt.step()
def compute_vgg_loss(self, vgg, img, target):
img_vgg = vgg_preprocess(img)
target_vgg = vgg_preprocess(target)
img_fea = vgg(img_vgg)
target_fea = vgg(target_vgg)
return torch.mean((self.instancenorm(img_fea) - self.instancenorm(target_fea)) ** 2)
def sample(self, x, y):
self.eval()
x_recon, y_recon, image_y2x, image_x2y = [], [], [], []
for i in range(x.size(0)):
cont_x = self.gen_x.encode_cont(x[i].unsqueeze(0))
cont_y = self.gen_y.encode_cont(y[i].unsqueeze(0))
noise_x = self.gen_x.encode_noise(x[i].unsqueeze(0))
h_y2x_cont = torch.cat((cont_y, noise_x), 1)
h_x2x_cont = torch.cat((cont_x, noise_x), 1)
x_recon.append(self.gen_x.decode_recs(h_x2x_cont))
y_recon.append(self.gen_y.decode_cont(cont_y))
image_y2x.append(self.gen_x.decode_recs(h_y2x_cont))
image_x2y.append(self.gen_y.decode_cont(cont_x))
x_recon, y_recon = torch.cat(x_recon), torch.cat(y_recon)
image_y2x = torch.cat(image_y2x)
image_x2y = torch.cat(image_x2y)
self.train()
return x, x_recon, image_x2y, y, y_recon, image_y2x
def dis_update(self, x, y, hyperparameters):
self.dis_opt.zero_grad()
self.content_opt.zero_grad()
# encode
cont_x = self.gen_x.encode_cont(x)
cont_y = self.gen_y.encode_cont(y)
noise_x = self.gen_x.encode_noise(x)
# decode (cross domain)
h_cat = torch.cat((cont_y, noise_x), 1)
rand_x = torch.randn(h_cat.size()).cuda()
image_y2x = self.gen_x.decode_recs(h_cat + rand_x)
rand_y = torch.randn(cont_x.size()).cuda()
image_x2y = self.gen_y.decode_cont(cont_x + rand_y)
# D loss
self.loss_dis_x = self.dis_x.calc_dis_loss(image_y2x.detach(), x)
self.loss_dis_y = self.dis_y.calc_dis_loss(image_x2y.detach(), y)
self.loss_dis_total = hyperparameters['gan_w'] * (self.loss_dis_x + self.loss_dis_y)
self.loss_dis_total.backward(retain_graph=True)
nn.utils.clip_grad_norm_(self.dis_content.parameters(), 5) # dis_content update
self.dis_opt.step()
self.content_opt.step()
def update_learning_rate(self):
if self.dis_scheduler is not None:
self.dis_scheduler.step()
if self.gen_scheduler is not None:
self.gen_scheduler.step()
if self.content_scheduler is not None:
self.content_scheduler.step()
def resume(self, checkpoint_dir, hyperparameters):
# Load generators
last_model_name = get_model_list(checkpoint_dir, "gen")
state_dict = torch.load(last_model_name)
self.gen_x.load_state_dict(state_dict['x'])
self.gen_y.load_state_dict(state_dict['y'])
iterations = int(last_model_name[-11:-3])
# Load discriminators
last_model_name = get_model_list(checkpoint_dir, "dis")
state_dict = torch.load(last_model_name)
self.dis_x.load_state_dict(state_dict['x'])
self.dis_y.load_state_dict(state_dict['y'])
# load discontent discriminator
last_model_name = get_model_list(checkpoint_dir, "dis_Content")
state_dict = torch.load(last_model_name)
self.dis_content.load_state_dict(state_dict['dis_c'])
# Load optimizers
state_dict = torch.load(os.path.join(checkpoint_dir, 'optimizer.pt'))
self.dis_opt.load_state_dict(state_dict['dis'])
self.gen_opt.load_state_dict(state_dict['gen'])
self.content_opt.load_state_dict(state_dict['dis_content'])
# Reinitilize schedulers
self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters, iterations)
self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters, iterations)
self.content_scheduler = get_scheduler(self.content_opt, hyperparameters, iterations)
print('Resume from iteration %d' % iterations)
return iterations
def save(self, snapshot_dir, iterations):
# Save generators, discriminators, and optimizers
gen_name = os.path.join(snapshot_dir, 'gen_%08d.pt' % (iterations + 1))
dis_name = os.path.join(snapshot_dir, 'dis_%08d.pt' % (iterations + 1))
dis_cont_name = os.path.join(snapshot_dir, 'dis_Content_%08d.pt' % (iterations + 1))
opt_name = os.path.join(snapshot_dir, 'denoise_optimizer.pt')
torch.save({'x': self.gen_x.state_dict(), 'y': self.gen_y.state_dict()}, gen_name)
torch.save({'x': self.dis_x.state_dict(), 'y': self.dis_y.state_dict()}, dis_name)
torch.save({'dis_c': self.dis_content.state_dict()}, dis_cont_name)
# opt state
torch.save({'gen': self.gen_opt.state_dict(), 'dis': self.dis_opt.state_dict(),
'dis_content': self.content_opt.state_dict()}, opt_name)