-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrunning.py
362 lines (312 loc) · 14.8 KB
/
running.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from svd_tools import get_grads_, set_grads_,pcgrad_svd, pcgrad_hierarchy
import numpy as np
import copy
import torch
import tools
from tools import average_weights_weighted
from tqdm import tqdm
from options import args_parser
def one_round_training(rule):
# gradient aggregation rule
Train_Round = {'FedAvg':train_round_fedavg,
'FedPAC':train_round_fedpac,
'FedProx':train_round_fedprox,
'FedBN':train_round_fedbn,
'FedGH': train_round_fedgh,
'FedLD': train_round_fedld
}
return Train_Round[rule]
## training methods -------------------------------------------------------------------
# local training only
def train_round_standalone(args, global_model, local_clients, rnd, **kwargs):
print(f'\n---- Global Communication Round : {rnd+1} ----')
num_users = args.num_users
m = max(int(args.frac * num_users), 1)
if (rnd >= args.epochs):
m = num_users
idx_users = np.random.choice(range(num_users), m, replace=False)
idx_users = sorted(idx_users)
local_losses1, local_losses2 = [], []
local_acc1 = []
local_acc2 = []
global_weight = global_model.state_dict()
for idx in idx_users:
local_client = local_clients[idx]
local_epoch = args.local_epoch
w, loss1, loss2, acc1, acc2 = local_client.local_training(local_epoch=local_epoch)
local_losses1.append(copy.deepcopy(loss1))
local_losses2.append(copy.deepcopy(loss2))
local_acc1.append(acc1)
local_acc2.append(acc2)
loss_avg1 = sum(local_losses1) / len(local_losses1)
loss_avg2 = sum(local_losses2) / len(local_losses2)
acc_avg1 = sum(local_acc1) / len(local_acc1)
acc_avg2 = sum(local_acc2) / len(local_acc2)
return loss_avg1, loss_avg2, acc_avg1, acc_avg2
def train_round_fedld(args, global_model, local_clients, rnd, grad_history, **kwargs):
print(f'\n---- Global Communication Round : {rnd + 1} ----')
num_users = args.num_users
m = max(int(args.frac * num_users), 1)
if (rnd >= args.epochs):
m = num_users
idx_users = np.random.choice(range(num_users), m, replace=False)
idx_users = sorted(idx_users)
local_weights, local_losses1, local_losses2 = [], [], []
local_acc1 = []
local_acc2 = []
agg_weight = []
global_weight = global_model.state_dict()
# for idx in tqdm(idx_users):
for idx in idx_users:
local_client = local_clients[idx]
agg_weight.append(local_client.agg_weight)
local_epoch = args.local_epoch
local_client.update_local_model(global_weight=global_weight)
_, loss1, loss2, acc1, acc2 = local_client.local_training(local_epoch=local_epoch, round=rnd)
local_losses1.append(loss1)
local_losses2.append(loss2)
local_acc1.append(acc1)
local_acc2.append(acc2)
# get global weights
if args.svd:
local_clients_grads = []
local_weights_new = []
for idx in idx_users:
local_clients_grads.append(get_grads_(local_clients[idx].local_model, global_model))
grad_new, grad_history = pcgrad_svd(num_users, local_clients_grads, grad_history)
for idx in idx_users:
local_clients[idx].local_model = set_grads_(local_clients[idx].local_model, global_model, grad_new)
for idx in idx_users:
local_weights_new.append(copy.deepcopy(local_clients[idx].local_model.state_dict()))
global_weight = average_weights_weighted(local_weights_new, agg_weight)
else:
global_weight = average_weights_weighted(local_weights, agg_weight)
global_model.load_state_dict(global_weight)
loss_avg1 = sum(local_losses1) / len(local_losses1)
loss_avg2 = sum(local_losses2) / len(local_losses2)
acc_avg1 = sum(local_acc1) / len(local_acc1)
acc_avg2 = sum(local_acc2) / len(local_acc2)
torch.cuda.empty_cache()
return loss_avg1, loss_avg2, acc_avg1, acc_avg2
def train_round_fedavg(args, global_model, local_clients, rnd, train_loader, **kwargs):
print(f'\n---- Global Communication Round : {rnd+1} ----')
num_users = args.num_users
m = max(int(args.frac * num_users), 1)
if (rnd >= args.epochs):
m = num_users
idx_users = np.random.choice(range(num_users), m, replace=False)
idx_users = sorted(idx_users)
local_weights, local_losses1, local_losses2 = [], [], []
local_grads = []
local_acc1 = []
local_acc2 = []
agg_weight = []
global_weight = global_model.state_dict()
for idx in idx_users:
local_client = local_clients[idx]
agg_weight.append(local_client.agg_weight)
local_epoch = args.local_epoch
local_client.update_local_model(global_weight=global_weight)
w, loss1, loss2, acc1, acc2 = local_client.local_training(local_epoch=local_epoch, round=rnd)
local_weights.append(copy.deepcopy(w))
local_losses1.append(copy.deepcopy(loss1))
local_losses2.append(copy.deepcopy(loss2))
local_acc1.append(acc1)
local_acc2.append(acc2)
# get global weights
global_weight = average_weights_weighted(local_weights, agg_weight)
# update global model
global_model.load_state_dict(global_weight)
loss_avg1 = sum(local_losses1) / len(local_losses1)
loss_avg2 = sum(local_losses2) / len(local_losses2)
acc_avg1 = sum(local_acc1) / len(local_acc1)
acc_avg2 = sum(local_acc2) / len(local_acc2)
return loss_avg1, loss_avg2, acc_avg1, acc_avg2
def train_round_fedprox(args, global_model, local_clients, rnd, train_loader, **kwargs):
print(f'\n---- Global Communication Round : {rnd + 1} ----')
num_users = args.num_users
m = max(int(args.frac * num_users), 1)
if (rnd >= args.epochs):
m = num_users
idx_users = np.random.choice(range(num_users), m, replace=False)
idx_users = sorted(idx_users)
local_weights, local_losses1, local_losses2 = [], [], []
local_acc1 = []
local_acc2 = []
agg_weight = []
global_weight = global_model.state_dict()
for idx in tqdm(idx_users):
local_client = local_clients[idx]
agg_weight.append(local_client.agg_weight)
local_epoch = args.local_epoch
local_client.update_local_model(global_weight=global_weight)
w, loss1, loss2, acc1, acc2 = local_client.local_training(local_epoch=local_epoch, global_model = global_model, round=rnd)
print('idx: {}, loss1: {}, loss2: {}, acc1: {}, acc2: {}'.format(idx, loss1, loss2, acc1, acc2))
local_weights.append(copy.deepcopy(w))
local_losses1.append(copy.deepcopy(loss1))
local_losses2.append(copy.deepcopy(loss2))
local_acc1.append(acc1)
local_acc2.append(acc2)
# get global weights
global_weight = average_weights_weighted(local_weights, agg_weight)
# update global model
global_model.load_state_dict(global_weight)
loss_avg1 = sum(local_losses1) / len(local_losses1)
loss_avg2 = sum(local_losses2) / len(local_losses2)
acc_avg1 = sum(local_acc1) / len(local_acc1)
acc_avg2 = sum(local_acc2) / len(local_acc2)
return loss_avg1, loss_avg2, acc_avg1, acc_avg2
def communication_fedbn(args,server_model, models, client_weights):
with torch.no_grad():
# aggregate params
#if args.mode.lower() == 'fedbn':
client_num = args.num_users
for key in server_model.state_dict().keys():
if 'bn' not in key:
temp = torch.zeros_like(server_model.state_dict()[key], dtype=torch.float32)
for client_idx in range(client_num):
temp += client_weights[client_idx] * models[client_idx].local_model.state_dict()[key]
server_model.state_dict()[key].data.copy_(temp)
for client_idx in range(client_num):
models[client_idx].local_model.state_dict()[key].data.copy_(server_model.state_dict()[key])
return server_model, models
def train_round_fedbn(args, global_model, local_clients, rnd, **kwargs):
print(f'\n---- Global Communication Round : {rnd + 1} ----')
num_users = args.num_users
m = max(int(args.frac * num_users), 1)
if (rnd >= args.epochs):
m = num_users
idx_users = np.random.choice(range(num_users), m, replace=False)
idx_users = sorted(idx_users)
local_weights, local_losses1, local_losses2 = [], [], []
local_grads = []
local_acc1 = []
local_acc2 = []
agg_weight = []
global_weight = global_model.state_dict()
for idx in tqdm(idx_users):
local_client = local_clients[idx]
agg_weight.append(local_client.agg_weight)
local_epoch = args.local_epoch
local_client.update_except_bn_local_model(global_weight=global_weight) # update parameters except bn layers
w, loss1, loss2, acc1, acc2 = local_client.local_training(local_epoch=local_epoch, round=rnd)
local_weights.append(copy.deepcopy(w))
local_losses1.append(copy.deepcopy(loss1))
local_losses2.append(copy.deepcopy(loss2))
local_acc1.append(acc1)
local_acc2.append(acc2)
# get global weights
global_weight = average_weights_weighted(local_weights, agg_weight)
# update global model
global_model.load_state_dict(global_weight)
loss_avg1 = sum(local_losses1) / len(local_losses1)
loss_avg2 = sum(local_losses2) / len(local_losses2)
acc_avg1 = sum(local_acc1) / len(local_acc1)
acc_avg2 = sum(local_acc2) / len(local_acc2)
return global_model, local_clients, loss_avg1, loss_avg2, acc_avg1, acc_avg2
def train_round_fedpac(args, global_model, local_clients, rnd, **kwargs):
print(f'\n---- Global Communication Round : {rnd + 1} ----')
num_users = args.num_users
m = max(int(args.frac * num_users), 1)
if (rnd >= args.epochs):
m = num_users
idx_users = np.random.choice(range(num_users), m, replace=False)
idx_users = sorted(idx_users)
local_weights, local_losses1, local_losses2 = [], [], []
local_acc1 = []
local_acc2 = []
agg_weight = [] # aggregation weights for f
avg_weight = [] # aggregation weights for g
sizes_label = []
local_protos = []
Vars = []
Hs = []
agg_g = args.agg_g # conduct classifier aggregation or not
if rnd <= args.epochs:
for idx in idx_users:
local_client = local_clients[idx]
## statistics collection
v, h = local_client.statistics_extraction()
Vars.append(copy.deepcopy(v))
Hs.append(copy.deepcopy(h))
## local training
local_epoch = args.local_epoch
sizes_label.append(local_client.sizes_label)
w, loss1, loss2, acc1, acc2, protos = local_client.local_training(local_epoch=local_epoch, round=rnd)
local_weights.append(copy.deepcopy(w))
local_losses1.append(copy.deepcopy(loss1))
local_losses2.append(copy.deepcopy(loss2))
local_acc1.append(acc1)
local_acc2.append(acc2)
agg_weight.append(local_client.agg_weight)
local_protos.append(copy.deepcopy(protos))
# get weight for feature extractor aggregation
agg_weight = torch.stack(agg_weight).to(args.device)
# update global feature extractor
global_weight_new = average_weights_weighted(local_weights, agg_weight)
# update global prototype
global_protos = tools.protos_aggregation(local_protos, sizes_label)
for idx in range(num_users):
local_client = local_clients[idx]
local_client.update_base_model(global_weight=global_weight_new)
local_client.update_global_protos(global_protos=global_protos)
# get weight for local classifier aggregation
if agg_g and rnd < args.epochs:
avg_weights = tools.get_head_agg_weight(m, Vars, Hs)
idxx = 0
for idx in idx_users:
local_client = local_clients[idx]
if avg_weights[idxx] is not None:
new_cls = tools.agg_classifier_weighted_p(local_weights, avg_weights[idxx],
local_client.w_local_keys, idxx)
else:
new_cls = local_weights[idxx]
local_client.update_local_classifier(new_weight=new_cls)
idxx += 1
loss_avg1 = sum(local_losses1) / len(local_losses1)
loss_avg2 = sum(local_losses2) / len(local_losses2)
acc_avg1 = sum(local_acc1) / len(local_acc1)
acc_avg2 = sum(local_acc2) / len(local_acc2)
return loss_avg1, loss_avg2, acc_avg1, acc_avg2
def train_round_fedgh(args, global_model, local_clients, rnd, grad_history, **kwargs):
print(f'\n---- Global Communication Round : {rnd + 1} ----')
num_users = args.num_users
m = max(int(args.frac * num_users), 1)
if (rnd >= args.epochs):
m = num_users
idx_users = np.random.choice(range(num_users), m, replace=False)
idx_users = sorted(idx_users)
local_weights, local_losses1, local_losses2 = [], [], []
local_acc1 = []
local_acc2 = []
agg_weight = []
global_weight = global_model.state_dict()
for idx in tqdm(idx_users):
local_client = local_clients[idx]
agg_weight.append(local_client.agg_weight)
local_epoch = args.local_epoch
local_client.update_local_model(global_weight=global_weight)
w, loss1, loss2, acc1, acc2 = local_client.local_training(local_epoch=local_epoch, round=rnd)
local_weights.append(copy.deepcopy(w))
local_losses1.append(copy.deepcopy(loss1))
local_losses2.append(copy.deepcopy(loss2))
local_acc1.append(acc1)
local_acc2.append(acc2)
# get global weights
local_clients_grads = []
local_weights_new = []
for idx in idx_users:
local_clients_grads.append(get_grads_(local_clients[idx].local_model, global_model))
grad_new, grad_history = pcgrad_hierarchy(num_users, local_clients_grads, grad_history)
for idx in idx_users:
local_clients[idx].local_model = set_grads_(local_clients[idx].local_model, global_model, grad_new)
for idx in idx_users:
local_weights_new.append(copy.deepcopy(local_clients[idx].local_model.state_dict()))
global_weight = average_weights_weighted(local_weights_new, agg_weight)
# update global model
global_model.load_state_dict(global_weight)
loss_avg1 = sum(local_losses1) / len(local_losses1)
loss_avg2 = sum(local_losses2) / len(local_losses2)
acc_avg1 = sum(local_acc1) / len(local_acc1)
acc_avg2 = sum(local_acc2) / len(local_acc2)
return loss_avg1, loss_avg2, acc_avg1, acc_avg2