forked from songyouwei/ABSA-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_example_bert_models.py
129 lines (110 loc) · 6.01 KB
/
infer_example_bert_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# -*- coding: utf-8 -*-
# file: infer_example_bert_models.py
# author: songyouwei <[email protected]>
# fixed: yangheng <[email protected]>
# Copyright (C) 2018. All Rights Reserved.
import numpy as np
import torch
import torch.nn.functional as F
from models.lcf_bert import LCF_BERT
from models.aen import AEN_BERT
from models.bert_spc import BERT_SPC
from pytorch_transformers import BertModel
from data_utils import Tokenizer4Bert
import argparse
def pad_and_truncate(sequence, maxlen, dtype='int64', padding='post', truncating='post', value=0):
x = (np.ones(maxlen) * value).astype(dtype)
if truncating == 'pre':
trunc = sequence[-maxlen:]
else:
trunc = sequence[:maxlen]
trunc = np.asarray(trunc, dtype=dtype)
if padding == 'post':
x[:len(trunc)] = trunc
else:
x[-len(trunc):] = trunc
return x
def prepare_data(text_left, aspect, text_right, tokenizer):
text_left = text_left.lower().strip()
text_right = text_right.lower().strip()
aspect = aspect.lower().strip()
text_raw_indices = tokenizer.text_to_sequence(text_left + " " + aspect + " " + text_right)
aspect_indices = tokenizer.text_to_sequence(aspect)
aspect_len = np.sum(aspect_indices != 0)
text_bert_indices = tokenizer.text_to_sequence('[CLS] ' + text_left + " " + aspect + " " + text_right + ' [SEP] ' + aspect + " [SEP]")
text_raw_bert_indices = tokenizer.text_to_sequence(
"[CLS] " + text_left + " " + aspect + " " + text_right + " [SEP]")
bert_segments_ids = np.asarray([0] * (np.sum(text_raw_indices != 0) + 2) + [1] * (aspect_len + 1))
bert_segments_ids = pad_and_truncate(bert_segments_ids, tokenizer.max_seq_len)
aspect_bert_indices = tokenizer.text_to_sequence("[CLS] " + aspect + " [SEP]")
return text_bert_indices, bert_segments_ids, text_raw_bert_indices, aspect_bert_indices
def get_parameters():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default='lcf_bert', type=str)
parser.add_argument('--dataset', default='laptop', type=str, help='twitter, restaurant, laptop')
parser.add_argument('--optimizer', default='adam', type=str)
parser.add_argument('--initializer', default='xavier_uniform_', type=str)
parser.add_argument('--learning_rate', default=2e-5, type=float, help='try 5e-5, 2e-5 for BERT, 1e-3 for others')
parser.add_argument('--dropout', default=0.1, type=float)
parser.add_argument('--l2reg', default=0.01, type=float)
parser.add_argument('--num_epoch', default=10, type=int, help='try larger number for non-BERT models')
parser.add_argument('--batch_size', default=16, type=int, help='try 16, 32, 64 for BERT models')
parser.add_argument('--log_step', default=5, type=int)
parser.add_argument('--embed_dim', default=300, type=int)
parser.add_argument('--hidden_dim', default=300, type=int)
parser.add_argument('--bert_dim', default=768, type=int)
parser.add_argument('--pretrained_bert_name', default='bert-base-uncased', type=str)
parser.add_argument('--max_seq_len', default=80, type=int)
parser.add_argument('--polarities_dim', default=3, type=int)
parser.add_argument('--hops', default=3, type=int)
parser.add_argument('--device', default=None, type=str, help='e.g. cuda:0')
parser.add_argument('--seed', default=None, type=int, help='set seed for reproducibility')
parser.add_argument('--valset_ratio', default=0, type=float,
help='set ratio between 0 and 1 for validation support')
# The following parameters are only valid for the lcf-bert model
parser.add_argument('--local_context_focus', default='cdm', type=str, help='local context focus mode, cdw or cdm')
parser.add_argument('--SRD', default=3, type=int,
help='semantic-relative-distance, see the paper of LCF-BERT model')
opt = parser.parse_args()
return opt
if __name__ == '__main__':
model_classes = {
'bert_spc': BERT_SPC,
'aen_bert': AEN_BERT,
'lcf_bert': LCF_BERT
}
# set your trained models here
state_dict_paths = {
'lcf_bert': 'state_dict/lcf_bert_laptop_val_acc0.2492',
'bert_spc': 'state_dict/bert_spc_laptop_val_acc0.268',
'aen_bert': 'state_dict/aen_bert_laptop_val_acc0.2006'
}
opt = get_parameters()
opt.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = Tokenizer4Bert(opt.max_seq_len, opt.pretrained_bert_name)
bert = BertModel.from_pretrained(opt.pretrained_bert_name)
model = model_classes[opt.model_name](bert, opt).to(opt.device)
print('loading model {0} ...'.format(opt.model_name))
model.load_state_dict(torch.load(state_dict_paths[opt.model_name]))
model.eval()
torch.autograd.set_grad_enabled(False)
# input: This little place has a cute interior decor and affordable city prices.
# text_left = This little place has a cute
# aspect = interior decor
# text_right = and affordable city prices.
text_bert_indices, bert_segments_ids, text_raw_bert_indices, aspect_bert_indices = \
prepare_data('This little place has a cute', 'interior decor', 'and affordable city prices.', tokenizer)
text_bert_indices = torch.tensor([text_bert_indices], dtype=torch.int64).to(opt.device)
bert_segments_ids = torch.tensor([bert_segments_ids], dtype=torch.int64).to(opt.device)
text_raw_bert_indices = torch.tensor([text_raw_bert_indices], dtype=torch.int64).to(opt.device)
aspect_bert_indices = torch.tensor([aspect_bert_indices], dtype=torch.int64).to(opt.device)
if 'lcf' in opt.model_name:
inputs = [text_bert_indices, bert_segments_ids, text_raw_bert_indices, aspect_bert_indices]
elif 'aen' in opt.model_name:
inputs = [text_raw_bert_indices, aspect_bert_indices]
elif 'spc' in opt.model_name:
inputs = [text_bert_indices, bert_segments_ids]
outputs = model(inputs)
t_probs = F.softmax(outputs, dim=-1).cpu().numpy()
print('t_probs = ', t_probs)
print('aspect sentiment = ', t_probs.argmax(axis=-1) - 1)