Skip to content

YOLOv6: a single-stage object detection framework dedicated to industrial applications.

License

Notifications You must be signed in to change notification settings

Zhengzhuo0309/YOLOv6

Repository files navigation

YOLOv6

Introduction

YOLOv6 is a single-stage object detection framework dedicated to industrial applications, with hardware-friendly efficient design and high performance.

YOLOv6 has a series of models for various industrial scenarios, including nano/tiny/s/m/l, which the architectures vary considering the model size for better accuracy-speed trade-off. And some Bag-of-freebies methods are introduced to further improve the performance, such as self-distillation and more training epochs. For industrial deployment, we adopt QAT with channel-wise distillation and graph optimization to pursue extreme performance.

YOLOv6-N hits 35.6% AP on COCO dataset with 802 FPS on T4. YOLOv6-S strikes 43.4% AP with 358 FPS, while the quantized YOLOv6-S model achieves 43.3% AP at a accelerated speed of 595 FPS. YOLOv6-Tiny/M/L also have excellent performance, which show higher accuracy than other detectors with the similar inference speed.

What's New

Coming Soon

  • Technical report 📃

Quick Start

Install

git clone https://github.com/meituan/YOLOv6
cd YOLOv6
pip install -r requirements.txt

Inference

First, download a pretrained model from the YOLOv6 release

Second, run inference with tools/infer.py

python tools/infer.py --weights yolov6s.pt --source img.jpg / imgdir / video.mp4

Training

Single GPU

python tools/train.py --batch 32 --conf configs/yolov6s.py --data data/coco.yaml --device 0

Multi GPUs (DDP mode recommended)

python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 256 --conf configs/yolov6s.py --data data/coco.yaml --device 0,1,2,3,4,5,6,7
Reproduce our results on COCO

For nano model

python -m torch.distributed.launch --nproc_per_node 4 tools/train.py \
									--batch 128 \
									--conf configs/yolov6n.py \
									--data data/coco.yaml \
									--epoch 400 \
									--device 0,1,2,3,4,5,6,7 \
									--name yolov6n_coco

For s/tiny model

python -m torch.distributed.launch --nproc_per_node 8 tools/train.py \
									--batch 256 \
									--conf configs/yolov6s.py \ # configs/yolov6_tiny.py
									--data data/coco.yaml \
									--epoch 400 \
									--device 0,1,2,3,4,5,6,7 \
									--name yolov6s_coco # yolov6_tiny_coco

For m/l model

# Step 1: Training a base model
python -m torch.distributed.launch --nproc_per_node 8 tools/train.py \
									--batch 256 \
									--conf configs/yolov6m.py \ # configs/yolov6l.py
									--data data/coco.yaml \
									--epoch 300 \
									--device 0,1,2,3,4,5,6,7 \
									--name yolov6m_coco # yolov6l_coco
                                                                                      
# Step 2: Self-distillation training
python -m torch.distributed.launch --nproc_per_node 8 tools/train.py \
									--batch 256 \
									--conf configs/yolov6m.py \ # configs/yolov6l.py
									--data data/coco.yaml \
									--epoch 300 \
									--device 0,1,2,3,4,5,6,7 \
									--distill \
									--teacher_model_path runs/train/yolov6m_coco/weights/best_ckpt.pt \ # # yolov6l_coco
									--name yolov6m_coco # yolov6l_coco
  • conf: select config file to specify network/optimizer/hyperparameters
  • data: prepare COCO dataset, YOLO format coco labels and specify dataset paths in data.yaml
  • make sure your dataset structure as follows:
├── coco
│   ├── annotations
│   │   ├── instances_train2017.json
│   │   └── instances_val2017.json
│   ├── images
│   │   ├── train2017
│   │   └── val2017
│   ├── labels
│   │   ├── train2017
│   │   ├── val2017
│   ├── LICENSE
│   ├── README.txt

Evaluation

Reproduce mAP on COCO val2017 dataset with 640×640 resolution

python tools/eval.py --data data/coco.yaml --batch 32 --weights yolov6s.pt --task val --test_load_size 634  --letterbox_return_int  --scale_exact --force_no_pad  --not_infer_on_rect
  • test_load_size: load img size when testing, recommended value for each models can be found here
  • letterbox_return_int: return int offset for letterbox
  • scale_exact: use exact scale size to scale coords
  • force_no_pad: force no extra pad in letterbox
  • not_infer_on_rect: not to use rect image size when inferring
Resume training

If your training process is corrupted, you can resume training by

# multi GPU training.
python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --resume

Your can also specify a checkpoint path to --resume parameter by

# remember to replace /path/to/your/checkpoint/path to the checkpoint path which you want to resume training.
--resume /path/to/your/checkpoint/path

Deployment

Tutorials

Benchmark

Model Size mAPval
0.5:0.95
SpeedT4
trt fp16 b1
(fps)
SpeedT4
trt fp16 b32
(fps)
Params
(M)
FLOPs
(G)
YOLOv6-N 640 36.3 802 1234 4.3 11.1
YOLOv6-Tiny 640 41.1 449 659 15.0 36.7
YOLOv6-S 640 43.8 358 495 17.2 44.2
YOLOv6-M 640 49.5 179 233 34.3 82.2
YOLOv6-L-SiLU 640 51.4 113 149 58.5 144.0
YOLOv6-L 640 52.3 98 118 58.5 144.0
  • Results of the mAP and speed are evaluated on COCO val2017 dataset with the input resolution of 640×640.
  • Refer to Test speed tutorial to reproduce the speed results of YOLOv6.
  • Params and FLOPs of YOLOv6 are estimated on deployed models.
  • For N/Tiny/S models, we use more training epochs strategy.
  • For M/L/L-SiLU models, we adopt self-distillation methods to further improve the performance.

Third-party resources

About

YOLOv6: a single-stage object detection framework dedicated to industrial applications.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 97.3%
  • Python 2.4%
  • Other 0.3%