forked from hanzhanggit/StackGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbirds_skip_thought_demo.py
223 lines (194 loc) · 8.74 KB
/
birds_skip_thought_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from __future__ import division
from __future__ import print_function
import prettytensor as pt
import tensorflow as tf
import numpy as np
import scipy.misc
import os
import argparse
from PIL import Image, ImageDraw, ImageFont
from misc.config import cfg, cfg_from_file
from misc.utils import mkdir_p
from misc import skipthoughts
from stageII.model import CondGAN
def parse_args():
parser = argparse.ArgumentParser(description='Train a GAN network')
parser.add_argument('--cfg', dest='cfg_file',
help='optional config file',
default=None, type=str)
parser.add_argument('--gpu', dest='gpu_id',
help='GPU device id to use [0]',
default=-1, type=int)
parser.add_argument('--caption_path', type=str, default=None,
help='Path to the file with text sentences')
# if len(sys.argv) == 1:
# parser.print_help()
# sys.exit(1)
args = parser.parse_args()
return args
def sample_encoded_context(embeddings, model, bAugmentation=True):
'''Helper function for init_opt'''
# Build conditioning augmentation structure for text embedding
# under different variable_scope: 'g_net' and 'hr_g_net'
c_mean_logsigma = model.generate_condition(embeddings)
mean = c_mean_logsigma[0]
if bAugmentation:
# epsilon = tf.random_normal(tf.shape(mean))
epsilon = tf.truncated_normal(tf.shape(mean))
stddev = tf.exp(c_mean_logsigma[1])
c = mean + stddev * epsilon
else:
c = mean
return c
def build_model(sess, embedding_dim, batch_size):
model = CondGAN(
lr_imsize=cfg.TEST.LR_IMSIZE,
hr_lr_ratio=int(cfg.TEST.HR_IMSIZE/cfg.TEST.LR_IMSIZE))
embeddings = tf.placeholder(
tf.float32, [batch_size, embedding_dim],
name='conditional_embeddings')
with pt.defaults_scope(phase=pt.Phase.test):
with tf.variable_scope("g_net"):
c = sample_encoded_context(embeddings, model)
z = tf.random_normal([batch_size, cfg.Z_DIM])
fake_images = model.get_generator(tf.concat(1, [c, z]))
with tf.variable_scope("hr_g_net"):
hr_c = sample_encoded_context(embeddings, model)
hr_fake_images = model.hr_get_generator(fake_images, hr_c)
ckt_path = cfg.TEST.PRETRAINED_MODEL
if ckt_path.find('.ckpt') != -1:
print("Reading model parameters from %s" % ckt_path)
saver = tf.train.Saver(tf.all_variables())
saver.restore(sess, ckt_path)
else:
print("Input a valid model path.")
return embeddings, fake_images, hr_fake_images
def drawCaption(img, caption):
img_txt = Image.fromarray(img)
# get a font
fnt = ImageFont.truetype('Pillow/Tests/fonts/FreeMono.ttf', 50)
# get a drawing context
d = ImageDraw.Draw(img_txt)
# draw text, half opacity
d.text((10, 256), 'Stage-I', font=fnt, fill=(255, 255, 255, 255))
d.text((10, 512), 'Stage-II', font=fnt, fill=(255, 255, 255, 255))
if img.shape[0] > 832:
d.text((10, 832), 'Stage-I', font=fnt, fill=(255, 255, 255, 255))
d.text((10, 1088), 'Stage-II', font=fnt, fill=(255, 255, 255, 255))
idx = caption.find(' ', 60)
if idx == -1:
d.text((256, 10), caption, font=fnt, fill=(255, 255, 255, 255))
else:
cap1 = caption[:idx]
cap2 = caption[idx+1:]
d.text((256, 10), cap1, font=fnt, fill=(255, 255, 255, 255))
d.text((256, 60), cap2, font=fnt, fill=(255, 255, 255, 255))
return img_txt
def save_super_images(sample_batchs, hr_sample_batchs,
captions_batch, batch_size,
startID, save_dir):
if not os.path.isdir(save_dir):
print('Make a new folder: ', save_dir)
mkdir_p(save_dir)
# Save up to 16 samples for each text embedding/sentence
img_shape = hr_sample_batchs[0][0].shape
for j in range(batch_size):
padding = np.zeros(img_shape)
row1 = [padding]
row2 = [padding]
# First row with up to 8 samples
for i in range(np.minimum(8, len(sample_batchs))):
lr_img = sample_batchs[i][j]
hr_img = hr_sample_batchs[i][j]
hr_img = (hr_img + 1.0) * 127.5
re_sample = scipy.misc.imresize(lr_img, hr_img.shape[:2])
row1.append(re_sample)
row2.append(hr_img)
row1 = np.concatenate(row1, axis=1)
row2 = np.concatenate(row2, axis=1)
superimage = np.concatenate([row1, row2], axis=0)
# Second 8 samples with up to 8 samples
if len(sample_batchs) > 8:
row1 = [padding]
row2 = [padding]
for i in range(8, len(sample_batchs)):
lr_img = sample_batchs[i][j]
hr_img = hr_sample_batchs[i][j]
hr_img = (hr_img + 1.0) * 127.5
re_sample = scipy.misc.imresize(lr_img, hr_img.shape[:2])
row1.append(re_sample)
row2.append(hr_img)
row1 = np.concatenate(row1, axis=1)
row2 = np.concatenate(row2, axis=1)
super_row = np.concatenate([row1, row2], axis=0)
superimage2 = np.zeros_like(superimage)
superimage2[:super_row.shape[0],
:super_row.shape[1],
:super_row.shape[2]] = super_row
mid_padding = np.zeros((64, superimage.shape[1], 3))
superimage =\
np.concatenate([superimage, mid_padding, superimage2], axis=0)
top_padding = np.zeros((128, superimage.shape[1], 3))
superimage =\
np.concatenate([top_padding, superimage], axis=0)
fullpath = '%s/sentence%d.jpg' % (save_dir, startID + j)
superimage = drawCaption(np.uint8(superimage), captions_batch[j])
scipy.misc.imsave(fullpath, superimage)
if __name__ == "__main__":
args = parse_args()
if args.cfg_file is not None:
cfg_from_file(args.cfg_file)
if args.gpu_id != -1:
cfg.GPU_ID = args.gpu_id
if args.caption_path is not None:
cfg.TEST.CAPTION_PATH = args.caption_path
cap_path = cfg.TEST.CAPTION_PATH
with open(cap_path) as f:
captions = f.read().split('\n')
captions_list = [cap for cap in captions if len(cap) > 0]
print('Successfully load sentences from: ', cap_path)
print('Total number of sentences:', len(captions_list))
# path to save generated samples
save_dir = cap_path[:cap_path.find('.txt')] + '-skip-thought'
if len(captions_list) > 0:
# Load skipthoughts model and generate embeddings from text sentences
print('Load skipthoughts as encoder:')
model = skipthoughts.load_model()
embeddings = skipthoughts.encode(model, captions_list, verbose=False)
num_embeddings = len(embeddings)
print('num_embeddings:', num_embeddings, embeddings.shape)
batch_size = np.minimum(num_embeddings, cfg.TEST.BATCH_SIZE)
# Build StackGAN and load the model
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:
with tf.device("/gpu:%d" % cfg.GPU_ID):
embeddings_holder, fake_images_opt, hr_fake_images_opt =\
build_model(sess, embeddings.shape[-1], batch_size)
count = 0
while count < num_embeddings:
iend = count + batch_size
if iend > num_embeddings:
iend = num_embeddings
count = num_embeddings - batch_size
embeddings_batch = embeddings[count:iend]
captions_batch = captions_list[count:iend]
samples_batchs = []
hr_samples_batchs = []
# Generate up to 16 images for each sentence with
# randomness from noise z and conditioning augmentation.
for i in range(np.minimum(16, cfg.TEST.NUM_COPY)):
hr_samples, samples =\
sess.run([hr_fake_images_opt, fake_images_opt],
{embeddings_holder: embeddings_batch})
samples_batchs.append(samples)
hr_samples_batchs.append(hr_samples)
save_super_images(samples_batchs,
hr_samples_batchs,
captions_batch,
batch_size,
count, save_dir)
count += batch_size
print('Finish generating samples for %d sentences:' % num_embeddings)
print('Example sentences:')
for i in xrange(np.minimum(10, num_embeddings)):
print('Sentence %d: %s' % (i, captions_list[i]))