-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
881 lines (789 loc) · 36.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
# Copyright (c) Pengfei Li. All Rights Reserved
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import datetime
import json
import os
import random
import time
from collections import namedtuple
from copy import deepcopy
from functools import partial
from pathlib import Path
import numpy as np
import torch
import torch.utils
from torch.utils.data import ConcatDataset, DataLoader, DistributedSampler
from transformers import RobertaTokenizerFast
from torch.utils.tensorboard import SummaryWriter
import util.dist as dist
import util.misc as utils
from datasets import build_dataset, get_coco_api_from_dataset
from datasets.coco_eval import TDODCocoEvaluator
from engine import evaluate, train_one_epoch_plain, train_one_epoch_distillation
from models import build_model
from models.postprocessors import build_postprocessors
from IPython import embed
import yaml
import os
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.chdir('/home/yuyang/dev/afford-x/AffordX-main')
def verify_mask_head(model, loaded_state_dict, description=""):
"""
验证模型的 mask_head 参数是否与加载的参数一致
"""
model_state = model.mask_head.state_dict()
mismatch = False
for key in loaded_state_dict:
if key in model_state:
# 确保两个张量在同一设备上
model_tensor = model_state[key].to(loaded_state_dict[key].device)
loaded_tensor = loaded_state_dict[key].to(model_tensor.device)
if not torch.allclose(model_tensor, loaded_tensor, atol=1e-6):
print(f"{description} - Parameter {key} does not match.")
mismatch = True
else:
print(f"{description} - Parameter {key} not found in model.mask_head.")
mismatch = True
if not mismatch:
print(f"{description} - All mask_head parameters match the loaded state.")
else:
print(f"{description} - Some mask_head parameters do not match the loaded state.")
def get_args_parser():
parser = argparse.ArgumentParser("Set transformer detector", add_help=False)
parser.add_argument('--config_path',
type=str,
default="configs/internimage_xl_22kto1k_384.yaml",
help='path to config file')
parser.add_argument("--run_name", default="", type=str)
# Dataset specific
parser.add_argument("--dataset_config", default=None, required=True)
parser.add_argument(
"--combine_datasets", nargs="+", help="List of datasets to combine for training", default=["flickr"]
)
parser.add_argument(
"--combine_datasets_val", nargs="+", help="List of datasets to combine for eval", default=["flickr"]
)
# Training hyper-parameters
parser.add_argument("--lr", default=1e-4, type=float)
parser.add_argument("--lr_backbone", default=1e-5, type=float)
parser.add_argument("--lr_fusion", default=1e-4, type=float)
parser.add_argument("--text_encoder_lr", default=5e-5, type=float)
parser.add_argument("--train_batch_size", default=2, type=int)
parser.add_argument("--valid_batch_size", default=2, type=int)
parser.add_argument("--weight_decay", default=1e-4, type=float)
parser.add_argument("--epochs", default=5, type=int)
parser.add_argument("--lr_drop", default=35, type=int)
parser.add_argument("--optimizer", default="adam", type=str)
parser.add_argument("--clip_max_norm", default=0.1, type=float, help="gradient clipping max norm")
parser.add_argument(
"--eval_skip",
default=1,
type=int,
help='do evaluation every "eval_skip" frames',
)
parser.add_argument(
"--schedule",
default="linear_with_warmup",
type=str,
choices=("step", "multistep", "linear_with_warmup", "all_linear_with_warmup"),
)
parser.add_argument("--ema", action="store_true")
parser.add_argument("--ema_decay", type=float, default=0.9998)
parser.add_argument("--fraction_warmup_steps", default=0.01, type=float, help="Fraction of total number of steps")
# Model parameters
parser.add_argument(
"--frozen_weights",
type=str,
default=None,
help="Path to the pretrained model. If set, only the mask head will be trained",
)
parser.add_argument(
"--freeze_text_encoder", action="store_true", help="Whether to freeze the weights of the text encoder"
)
parser.add_argument(
"--freeze_backbone", action="store_true", help="Whether to freeze the weights of the backbone"
)
parser.add_argument(
"--text_encoder_type",
default="roberta-base",
choices=("roberta-base", "distilroberta-base", "roberta-large"),
)
# Backbone
parser.add_argument(
"--backbone",
default="resnet101",#internimage
type=str,
help="Name of the convolutional backbone to use such as resnet50 resnet101 timm_tf_efficientnet_b3_ns",
)
parser.add_argument(
"--dilation",
action="store_true",
help="If true, we replace stride with dilation in the last convolutional block (DC5)",
)
parser.add_argument(
"--position_embedding",
default="sine",
type=str,
choices=("sine", "learned"),
help="Type of positional embedding to use on top of the image features",
)
# Transformer
parser.add_argument(
"--enc_layers",
default=6,
type=int,
help="Number of encoding layers in the transformer",
)
parser.add_argument(
"--dec_layers",
default=6,
type=int,
help="Number of decoding layers in the transformer",
)
parser.add_argument(
"--dim_feedforward",
default=2048,
type=int,
help="Intermediate size of the feedforward layers in the transformer blocks",
)
parser.add_argument(
"--hidden_dim",
default=256,
type=int,
help="Size of the embeddings (dimension of the transformer)",
)
parser.add_argument("--dropout", default=0.1, type=float, help="Dropout applied in the transformer")
parser.add_argument(
"--nheads",
default=8,
type=int,
help="Number of attention heads inside the transformer's attentions",
)
parser.add_argument("--num_queries", default=100, type=int, help="Number of query slots")
parser.add_argument("--pre_norm", action="store_true")
parser.add_argument(
"--no_pass_pos_and_query",
dest="pass_pos_and_query",
action="store_false",
help="Disables passing the positional encodings to each attention layers",
)
# Segmentation
parser.add_argument(
"--mask_model",
default="none",
type=str,
choices=("none", "smallconv", "v2"),
help="Segmentation head to be used (if None, segmentation will not be trained)",
)
parser.add_argument("--masks", action="store_true")
# Loss
parser.add_argument(
"--no_aux_loss",
dest="aux_loss",
action="store_false",
help="Disables auxiliary decoding losses (loss at each layer)",
)
parser.add_argument(
"--set_loss",
default="hungarian",
type=str,
choices=("sequential", "hungarian", "lexicographical"),
help="Type of matching to perform in the loss",
)
parser.add_argument("--contrastive_loss", action="store_true", help="Whether to add contrastive loss")
parser.add_argument(
"--no_contrastive_align_loss",
dest="contrastive_align_loss",
action="store_false",
help="Whether to add contrastive alignment loss",
)
parser.add_argument(
"--contrastive_loss_hdim",
type=int,
default=64,
help="Projection head output size before computing normalized temperature-scaled cross entropy loss",
)
parser.add_argument(
"--temperature_NCE", type=float, default=0.07, help="Temperature in the temperature-scaled cross entropy loss"
)
# * Matcher
parser.add_argument(
"--set_cost_class",
default=1,
type=float,
help="Class coefficient in the matching cost",
)
parser.add_argument(
"--set_cost_bbox",
default=5,
type=float,
help="L1 box coefficient in the matching cost",
)
parser.add_argument(
"--set_cost_giou",
default=2,
type=float,
help="giou box coefficient in the matching cost",
)
# Loss coefficients
parser.add_argument("--ce_loss_coef", default=1, type=float)
parser.add_argument("--mask_loss_coef", default=1, type=float)
parser.add_argument("--dice_loss_coef", default=1, type=float)
parser.add_argument("--bbox_loss_coef", default=5, type=float)
parser.add_argument("--giou_loss_coef", default=2, type=float)
parser.add_argument("--qa_loss_coef", default=1, type=float)
parser.add_argument(
"--eos_coef",
default=0.1,
type=float,
help="Relative classification weight of the no-object class",
)
parser.add_argument("--contrastive_loss_coef", default=0.1, type=float)
parser.add_argument("--contrastive_align_loss_coef", default=1, type=float)
parser.add_argument(
"--nsthl2_loss",
action="store_true",
help="Whether to add noun&sth text l2 loss",
)
parser.add_argument("--nsthl2_coef", default=1e4, type=float)
parser.add_argument(
"--softkd_loss",
action="store_true",
help="Whether to use softkd loss",
)
parser.add_argument("--softkd_coef", default=1, type=float)
parser.add_argument("--cluster", action="store_true")
parser.add_argument("--cluster_choice_loss", default=0, type=float) # 1
parser.add_argument("--cluster_feature_loss", default=1e4, type=float) # 1e4
parser.add_argument("--cluster_memory_size", default=1024, type=int)
parser.add_argument("--cluster_num", default=3, type=int) # 2
parser.add_argument("--distillation", action="store_true")
parser.add_argument("--verb_noun_input", action="store_true")
parser.add_argument("--fifo_memory", action="store_true")
parser.add_argument("--without_pretrain", action="store_true")
parser.add_argument("--load_full", action="store_true")
parser.add_argument("--use_dyhead", action="store_true")
parser.add_argument("--use_txtlayer", action="store_true")
parser.add_argument("--use_se", action="store_true")
parser.add_argument("--fusion", action="store_true")
parser.add_argument("--verb_att", action="store_true")
parser.add_argument("--load_word_full", action="store_true")
parser.add_argument("--load_lvis", action="store_true")
parser.add_argument("--load_voc", action="store_true")
parser.add_argument("--load_coco", action="store_true")
parser.add_argument("--fpn", action="store_true")
parser.add_argument("--layer_wise_loss", action="store_true", help="Whether to add layer-wise distillation loss")
parser.add_argument('--img_memory_distill_coef', default=0.1, type=float, help="Coefficient for the img_memory distillation loss")
# Run specific
parser.add_argument("--test", action="store_true", help="Whether to run evaluation on val or test set")
parser.add_argument("--test_type", type=str, default="test", choices=("testA", "testB", "test"))
parser.add_argument("--output-dir", default="", help="path where to save, empty for no saving")
parser.add_argument("--device", default="cuda", help="device to use for training / testing")
parser.add_argument("--seed", default=42, type=int)
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument("--load", default="", help="resume from checkpoint")
parser.add_argument("--load_noun", default="", help="resume from checkpoint")
parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
parser.add_argument("--eval", action="store_true", help="Only run evaluation")
parser.add_argument("--num_workers", default=10, type=int)
# Distributed training parameters
parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist-url", default="env://", help="url used to set up distributed training")
parser.add_argument("--output_dir", type=str, default="test")
parser.add_argument("--mask_path", default="", help="Path to the checkpoint containing mask head weights")
return parser
def main(args):
# Init distributed mode
print("#########################")
print(torch.cuda.device_count())
print("#########################")
dist.init_distributed_mode(args)
# if dist.is_main_process():
# if os.path.exists(Path(args.output_dir)):
# # raise RuntimeError('The model directory already exists: %s' % args.output_dir)
# pass
# else:
# print("Creating directory: %s" % args.output_dir)
# Path(args.output_dir).mkdir(parents=True, exist_ok=True)
# Update dataset specific configs
if args.dataset_config is not None:
# https://stackoverflow.com/a/16878364
d = vars(args)
with open(args.dataset_config, "r") as f:
cfg = json.load(f)
d.update(cfg)
print("git:\n {}\n".format(utils.get_sha()))
# Segmentation related
if args.mask_model != "none":
args.masks = True
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only"
print(args)
device = torch.device(args.device)
output_dir = Path(args.output_dir)
#output_dir_log 是记录准确率的文件夹,它的路径是把output_dir第一个/前面的内容替换成 logs_result
#遍历循环str(output_dir).replace(output_dir,直到遇到logs的part
output_dir_log = Path(str(output_dir).replace(output_dir.parts[0], "logs_result"))
print("output_dir_log:",output_dir_log)
if dist.is_main_process():
os.makedirs(output_dir, exist_ok=True)
os.makedirs(output_dir_log, exist_ok=True)
# 记录准确率
filename = f'acc_{int(time.time())}.txt' # 使用当前时间戳命名文件
file_path = f'{output_dir_log}/{filename}'
if not os.path.exists(file_path):
#创建一个
with open(file_path, 'w') as f:
f.write("Epoch, Metric, Value\n") # 创建文件并添加标题
# fix the seed for reproducibility
seed = args.seed + dist.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.use_deterministic_algorithms(False)
###############################################################################
#################################### model ####################################
# Build the model
model, criterion, cluster_criterion, weight_dict = build_model(args)
model.to(device)
criterion.to(device)
assert criterion is not None
if args.distillation:
model_noun = deepcopy(model)
model_noun.to(device)
else:
model_noun = None
model_noun_ema = None
model_noun_without_ddp = None
if cluster_criterion:
cluster_criterion.to(device)
cluster_criterion.syn_memory()
# Get a copy of the model for exponential moving averaged version of the model
model_ema = deepcopy(model) if args.ema else None
model_without_ddp = model
if args.distributed:
print("gpu:",args.gpu)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("number of params:", n_parameters)
if args.distillation:
model_noun_ema = deepcopy(model_noun) if args.ema else None
model_noun_without_ddp = model_noun
if args.distributed:
model_noun = torch.nn.parallel.DistributedDataParallel(model_noun, device_ids=[args.gpu], find_unused_parameters=True)
model_noun_without_ddp = model_noun.module
###################################################################################
#################################### optimizer ####################################
# Set up optimizers
param_dicts = [
{
"params": [
p
for n, p in model_without_ddp.named_parameters()
if "backbone" not in n and "text_encoder" not in n and "vision_language_fusion" not in n and p.requires_grad
]
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "text_encoder" in n and p.requires_grad],
"lr": args.text_encoder_lr,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "vision_language_fusion" in n and p.requires_grad],
"lr": args.lr_fusion,
},
]
if args.distillation:
param_dicts += [
{
"params": [
p
for n, p in model_noun_without_ddp.named_parameters()
if "backbone" not in n and "text_encoder" not in n and "vision_language_fusion" not in n and p.requires_grad
]
},
{
"params": [p for n, p in model_noun_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
{
"params": [p for n, p in model_noun_without_ddp.named_parameters() if "text_encoder" in n and p.requires_grad],
"lr": args.text_encoder_lr,
},
{
"params": [p for n, p in model_noun_without_ddp.named_parameters() if "vision_language_fusion" in n and p.requires_grad],
"lr": args.lr_fusion,
},
]
if args.optimizer == "sgd":
optimizer = torch.optim.SGD(param_dicts, lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
elif args.optimizer in ["adam", "adamw"]:
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay)
else:
raise RuntimeError(f"Unsupported optimizer {args.optimizer}")
#################################################################################
#################################### dataset ####################################
# Train dataset
if len(args.combine_datasets) == 0 and not args.eval:
raise RuntimeError("Please provide at least one training dataset")
dataset_train, sampler_train, data_loader_train = None, None, None
path = 'ckpt_new/path/roberta-base'
tokenizer = RobertaTokenizerFast.from_pretrained(path)
if not args.eval:
dataset_train = ConcatDataset(
[build_dataset(name, image_set="train", args=args, tokenizer=tokenizer) for name in args.combine_datasets]
)
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
batch_sampler_train = torch.utils.data.BatchSampler(sampler_train, args.train_batch_size, drop_last=True)
if args.distillation:
data_loader_train = DataLoader(
dataset_train,
batch_sampler=batch_sampler_train,
collate_fn=partial(utils.collate_fn, False),
num_workers=args.num_workers,
pin_memory = True,
)
else:
data_loader_train = DataLoader(
dataset_train,
batch_sampler=batch_sampler_train,
collate_fn=partial(utils.collate_fn_plain, False),
num_workers=args.num_workers,
pin_memory = True,
)
# Val dataset
if len(args.combine_datasets_val) == 0:
raise RuntimeError("Please provide at leas one validation dataset")
Val_all = namedtuple(typename="val_data", field_names=["dataset_name", "dataloader", "base_ds", "evaluator_list"])
val_tuples = []
for dset_name in args.combine_datasets_val:
dset = build_dataset(dset_name, image_set="val", args=args, tokenizer=tokenizer)
sampler = (
DistributedSampler(dset, shuffle=False) if args.distributed else torch.utils.data.SequentialSampler(dset)
)
dataloader = DataLoader(
dset,
args.valid_batch_size,
sampler=sampler,
drop_last=False,
collate_fn=partial(utils.collate_fn_plain, False),
num_workers=args.num_workers,
pin_memory = True,
)
base_ds = get_coco_api_from_dataset(dset)
val_tuples.append(Val_all(dataset_name=dset_name, dataloader=dataloader, base_ds=base_ds, evaluator_list=None))
############################################################################################
#################################### load model weights ####################################
# Used for loading weights from another model and starting a training from scratch. Especially useful if
# loading into a model with different functionality.
# Load model weights
if args.load:
checkpoint_pronoun = torch.load(args.load, map_location="cpu")
state_dict = checkpoint_pronoun.get("model_ema", checkpoint_pronoun.get("model"))
smart_load_state_dict(model_without_ddp, state_dict)
if args.ema:
model_ema = deepcopy(model_without_ddp)
if args.distillation:
print("loading from", args.load_noun)
checkpoint = torch.load(args.load_noun, map_location="cpu")
state_dict_noun = checkpoint.get("model_ema", checkpoint.get("model"))
smart_load_state_dict(model_noun_without_ddp, state_dict_noun)
if args.ema:
model_noun_ema = deepcopy(model_noun_without_ddp)
# Load frozen weights
if args.frozen_weights is not None:
if args.frozen_weights.startswith("https"):
checkpoint = torch.hub.load_state_dict_from_url(args.frozen_weights, map_location="cpu", check_hash=True)
else:
checkpoint = torch.load(args.frozen_weights, map_location="cpu")
state_dict = checkpoint.get("model_ema", checkpoint.get("model"))
smart_load_state_dict(model_without_ddp.detr, state_dict, prefix='detr.')
if args.ema:
model_ema = deepcopy(model_without_ddp)
if args.cluster and "cluster_criterion" in checkpoint:
cluster_criterion.load_state_dict(checkpoint["cluster_criterion"], strict=False)
# Resume training
if args.resume:
if args.resume.startswith("https"):
checkpoint = torch.hub.load_state_dict_from_url(args.resume, map_location="cpu", check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location="cpu")
state_dict = checkpoint["model"]
smart_load_state_dict(model_without_ddp, state_dict)
if not args.eval and "optimizer" in checkpoint and "epoch" in checkpoint:
optimizer.load_state_dict(checkpoint["optimizer"])
args.start_epoch = checkpoint["epoch"] + 1
if args.cluster and "cluster_criterion" in checkpoint:
cluster_criterion.load_state_dict(checkpoint["cluster_criterion"], strict=False)
if args.ema:
if "model_ema" not in checkpoint:
print("WARNING: ema model not found in checkpoint, resetting to current model")
model_ema = deepcopy(model_without_ddp)
else:
state_dict_ema = checkpoint["model_ema"]
smart_load_state_dict(model_ema, state_dict_ema)
#######################################################################################
#################################### train or eval ####################################
def build_evaluator_list(base_ds, dataset_name):
"""Helper function to build the list of evaluators for a given dataset"""
evaluator_list = []
iou_types = ["bbox"]
if args.masks:
iou_types.append("segm")
if dataset_name[:4] == "tdod":
evaluator_list = [TDODCocoEvaluator(base_ds, tuple(iou_types), useCats=True)]
return evaluator_list
if args.eval:
checkpoint_paths = [output_dir / "checkpoint.pth"]
# extra checkpoint before LR drop and every 100 epochs
for checkpoint_path in checkpoint_paths:
dist.save_on_master(
{
"model": model_without_ddp.state_dict(),
"model_ema": model_ema.state_dict() if args.ema else None,
"model_noun": model_noun_without_ddp.state_dict() if args.distillation else None,
"model_noun_ema": model_noun_ema.state_dict() if args.distillation and args.ema else None,
"optimizer": optimizer.state_dict(),
"epoch": 0,
"args": args,
"cluster_criterion": cluster_criterion.state_dict() if args.cluster else None,
},
checkpoint_path,
)
ap_bbox_0p5_list = []
ap_mask_0p5_list = []
test_stats = {}
test_model = model_ema if model_ema is not None else model
test_model_noun = model_noun_ema if model_noun_ema is not None else model_noun
for i, item in enumerate(val_tuples):
evaluator_list = build_evaluator_list(item.base_ds, item.dataset_name)
postprocessors = build_postprocessors(args, item.dataset_name)
item = item._replace(evaluator_list=evaluator_list)
print(f"Evaluating {item.dataset_name}")
curr_test_stats = evaluate(
model=test_model,
model_noun=test_model_noun,
criterion=criterion,
cluster_criterion=cluster_criterion,
postprocessors=postprocessors,
weight_dict=weight_dict,
data_loader=item.dataloader,
evaluator_list=item.evaluator_list,
device=device,
args=args,
)
test_stats.update({item.dataset_name + "_" + k: v for k, v in curr_test_stats.items()})
ap_bbox_0p5_list.append(curr_test_stats['coco_eval_bbox'][1])
if args.masks:
ap_mask_0p5_list.append(curr_test_stats['coco_eval_masks'][1])
log_stats = {
**{f"test_{k}": v for k, v in test_stats.items()},
"n_parameters": n_parameters,
}
print('===============')
print(log_stats)
print('===============')
final_map = np.mean(ap_bbox_0p5_list)
for i in range(len(ap_bbox_0p5_list)):
print("bbox [email protected] Task %d: %s" % (i+1, str(ap_bbox_0p5_list[i])))
print("***bbox [email protected]: %s" % str(final_map))
if args.masks:
final_map = np.mean(ap_mask_0p5_list)
for i in range(len(ap_mask_0p5_list)):
print("mask [email protected] Task %d: %s" % (i+1, str(ap_mask_0p5_list[i])))
print("***mask [email protected]: %s" % str(final_map))
return
writer = SummaryWriter(output_dir)
# Runs training and evaluates after every --eval_skip epochs
print("Start training")
start_time = time.time()
best_metric = 0.0
for epoch in range(args.start_epoch, args.epochs):
print(f"Starting epoch {epoch}")
if args.distributed:
sampler_train.set_epoch(epoch)
if args.distillation:
train_stats = train_one_epoch_distillation(
writer=writer,
model=model,
model_noun=model_noun,
criterion=criterion,
cluster_criterion=cluster_criterion,
data_loader=data_loader_train,
weight_dict=weight_dict,
optimizer=optimizer,
device=device,
epoch=epoch,
args=args,
max_norm=args.clip_max_norm,
model_ema=model_ema,
model_noun_ema=model_noun_ema,
)
else:
train_stats = train_one_epoch_plain(
writer=writer,
model=model,
criterion=criterion,
cluster_criterion=cluster_criterion,
data_loader=data_loader_train,
weight_dict=weight_dict,
optimizer=optimizer,
device=device,
epoch=epoch,
args=args,
max_norm=args.clip_max_norm,
model_ema=model_ema,
)
if args.output_dir:
checkpoint_paths = [output_dir / "checkpoint.pth"]
# if (epoch + 1) % 1 == 0:
# checkpoint_paths.append(output_dir / f"checkpoint{epoch:04}.pth")
# extra checkpoint before LR drop and every 2 epochs
# if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 1 == 0:
# checkpoint_paths.append(output_dir / f"checkpoint{epoch:04}.pth")
for checkpoint_path in checkpoint_paths:
dist.save_on_master(
{
"model": model_without_ddp.state_dict(),
"model_ema": model_ema.state_dict() if args.ema else None,
"model_noun": model_noun_without_ddp.state_dict() if args.distillation else None,
"model_noun_ema": model_noun_ema.state_dict() if args.distillation and args.ema else None,
"optimizer": optimizer.state_dict(),
"epoch": epoch,
"args": args,
"cluster_criterion": cluster_criterion.state_dict() if args.cluster else None,
},
checkpoint_path,
)
if epoch % args.eval_skip == 0:
test_stats = {}
test_model = model_ema if model_ema is not None else model
test_model_noun = model_noun_ema if model_noun_ema is not None else model_noun
for i, item in enumerate(val_tuples):
evaluator_list = build_evaluator_list(item.base_ds, item.dataset_name)
item = item._replace(evaluator_list=evaluator_list)
postprocessors = build_postprocessors(args, item.dataset_name)
print(f"Evaluating {item.dataset_name}")
curr_test_stats = evaluate(
model=test_model,
model_noun=test_model_noun,
criterion=criterion,
cluster_criterion=cluster_criterion,
postprocessors=postprocessors,
weight_dict=weight_dict,
data_loader=item.dataloader,
evaluator_list=item.evaluator_list,
device=device,
args=args,
)
test_stats.update({item.dataset_name + "_" + k: v for k, v in curr_test_stats.items()})
else:
test_stats = {}
log_stats = {
**{f"train_{k}": v for k, v in train_stats.items()},
**{f"test_{k}": v for k, v in test_stats.items()},
"epoch": epoch,
"n_parameters": n_parameters,
}
if args.output_dir and dist.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
if epoch % args.eval_skip == 0:
metric_bbox = np.mean([v[1] for k, v in test_stats.items() if "coco_eval_bbox" in k]) # [email protected]
if args.masks:
metric_masks = np.mean([v[1] for k, v in test_stats.items() if "coco_eval_masks" in k]) # [email protected]
if dist.is_main_process():
writer.add_scalar('[email protected]_bbox', metric_bbox, epoch)
if args.masks:
writer.add_scalar('[email protected]_masks', metric_masks, epoch)
for i in range(1,15):
try:
writer.add_scalar('%[email protected]_bbox' % i, test_stats['tdod_%d_coco_eval_bbox' % i][1], epoch)
except:
pass
if args.masks:
for i in range(1,15):
try:
writer.add_scalar('%[email protected]_masks' % i, test_stats['tdod_%d_coco_eval_masks' % i][1], epoch)
except:
pass
with open(file_path, 'a') as f:
# 计算并记录[email protected] for bounding boxes
metric_bbox = np.mean([v[1] for k, v in test_stats.items() if "coco_eval_bbox" in k])
f.write(f"{epoch}, BBox [email protected], {metric_bbox}\n")
if args.masks:
# 计算并记录[email protected] for masks
metric_masks = np.mean([v[1] for k, v in test_stats.items() if "coco_eval_masks" in k])
f.write(f"{epoch}, Masks [email protected], {metric_masks}\n")
if args.output_dir:
save_best = False
if not args.masks and metric_bbox > best_metric:
save_best = True
best_metric = metric_bbox
elif args.masks and metric_masks > best_metric:
save_best = True
best_metric = metric_masks
if save_best:
checkpoint_paths = [output_dir / "BEST_checkpoint.pth"]
# extra checkpoint before LR drop and every 100 epochs
for checkpoint_path in checkpoint_paths:
dist.save_on_master(
{
"model": model_without_ddp.state_dict(),
"model_ema": model_ema.state_dict() if args.ema else None,
"model_noun": model_noun_without_ddp.state_dict() if args.distillation else None,
"model_noun_ema": model_noun_ema.state_dict() if args.distillation and args.ema else None,
"optimizer": optimizer.state_dict(),
"epoch": epoch,
"args": args,
"cluster_criterion": cluster_criterion.state_dict() if args.cluster else None,
},
checkpoint_path,
)
torch.cuda.empty_cache()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("Training time {}".format(total_time_str))
def smart_load_state_dict(model, state_dict, prefix=None):
model_dict = model.state_dict()
if prefix is None:
prefixes = ['detr.', 'mask_head.']
else:
prefixes = [prefix]
new_state_dict = {}
for k, v in state_dict.items():
matched = False
for p in prefixes:
model_has_prefix = any(mk.startswith(p) for mk in model_dict.keys())
state_has_prefix = k.startswith(p)
if model_has_prefix and not state_has_prefix:
new_key = p + k
elif not model_has_prefix and state_has_prefix:
new_key = k[len(p):]
else:
new_key = k
if new_key in model_dict:
new_state_dict[new_key] = v
matched = True
break
if not matched:
if k in model_dict:
new_state_dict[k] = v
else:
print(f"Warning: {k} not found in model, skipping.")
model.load_state_dict(new_state_dict, strict=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser("TOIST training and evaluation.", parents=[get_args_parser()])
args = parser.parse_args()
if not args.output_dir:
args.output_dir = './logs/test'
main(args)