forked from talent-plan/tinysql
-
Notifications
You must be signed in to change notification settings - Fork 0
/
histogram.go
732 lines (676 loc) · 23 KB
/
histogram.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
// Copyright 2017 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package statistics
import (
"bytes"
"fmt"
"math"
"strings"
"time"
"github.com/pingcap/errors"
"github.com/pingcap/tidb/kv"
"github.com/pingcap/tidb/parser/model"
"github.com/pingcap/tidb/parser/mysql"
"github.com/pingcap/tidb/parser/terror"
"github.com/pingcap/tidb/sessionctx/stmtctx"
"github.com/pingcap/tidb/tablecodec"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/chunk"
"github.com/pingcap/tidb/util/codec"
"github.com/pingcap/tidb/util/ranger"
"github.com/pingcap/tipb/go-tipb"
)
// Histogram represents statistics for a column or index.
type Histogram struct {
ID int64 // Column ID.
NDV int64 // Number of distinct values.
NullCount int64 // Number of null values.
// LastUpdateVersion is the version that this histogram updated last time.
LastUpdateVersion uint64
Tp *types.FieldType
// Histogram elements.
//
// A bucket bound is the smallest and greatest values stored in the bucket. The lower and upper bound
// are stored in one column.
//
// A bucket count is the number of items stored in all previous buckets and the current bucket.
// Bucket counts are always in increasing order.
//
// A bucket repeat is the number of repeats of the bucket value, it can be used to find popular values.
Bounds *chunk.Chunk
Buckets []Bucket
// Used for estimating fraction of the interval [lower, upper] that lies within the [lower, value].
// For some types like `Int`, we do not build it because we can get them directly from `Bounds`.
scalars []scalar
// TotColSize is the total column size for the histogram.
TotColSize int64
}
// Bucket store the bucket count and repeat.
type Bucket struct {
Count int64
Repeat int64
}
type scalar struct {
lower float64
upper float64
commonPfxLen int // commonPfxLen is the common prefix length of the lower bound and upper bound when the value type is KindString or KindBytes.
}
// NewHistogram creates a new histogram.
func NewHistogram(id, ndv, nullCount int64, version uint64, tp *types.FieldType, bucketSize int, totColSize int64) *Histogram {
return &Histogram{
ID: id,
NDV: ndv,
NullCount: nullCount,
LastUpdateVersion: version,
Tp: tp,
Bounds: chunk.NewChunkWithCapacity([]*types.FieldType{tp}, 2*bucketSize),
Buckets: make([]Bucket, 0, bucketSize),
TotColSize: totColSize,
}
}
// GetLower gets the lower bound of bucket `idx`.
func (hg *Histogram) GetLower(idx int) *types.Datum {
d := hg.Bounds.GetRow(2*idx).GetDatum(0, hg.Tp)
return &d
}
// GetUpper gets the upper bound of bucket `idx`.
func (hg *Histogram) GetUpper(idx int) *types.Datum {
d := hg.Bounds.GetRow(2*idx+1).GetDatum(0, hg.Tp)
return &d
}
// AvgColSize is the average column size of the histogram. These sizes are derived from function `encode`
// and `Datum::ConvertTo`, so we need to update them if those 2 functions are changed.
func (c *Column) AvgColSize(count int64, isKey bool) float64 {
if count == 0 {
return 0
}
// Note that, if the handle column is encoded as value, instead of key, i.e,
// when the handle column is in a unique index, the real column size may be
// smaller than 8 because it is encoded using `EncodeVarint`. Since we don't
// know the exact value size now, use 8 as approximation.
if c.IsHandle {
return 8
}
histCount := c.TotalRowCount()
notNullRatio := 1.0
if histCount > 0 {
notNullRatio = 1.0 - float64(c.NullCount)/histCount
}
switch c.Histogram.Tp.Tp {
case mysql.TypeFloat, mysql.TypeDouble, mysql.TypeDuration, mysql.TypeDate, mysql.TypeDatetime, mysql.TypeTimestamp:
return 8 * notNullRatio
case mysql.TypeTiny, mysql.TypeShort, mysql.TypeInt24, mysql.TypeLong, mysql.TypeLonglong, mysql.TypeYear, mysql.TypeEnum, mysql.TypeBit, mysql.TypeSet:
if isKey {
return 8 * notNullRatio
}
}
// Keep two decimal place.
return math.Round(float64(c.TotColSize)/float64(count)*100) / 100
}
// AvgColSizeListInDisk is the average column size of the histogram. These sizes are derived
// from `chunk.ListInDisk` so we need to update them if those 2 functions are changed.
func (c *Column) AvgColSizeListInDisk(count int64) float64 {
if count == 0 {
return 0
}
histCount := c.TotalRowCount()
notNullRatio := 1.0
if histCount > 0 {
notNullRatio = 1.0 - float64(c.NullCount)/histCount
}
size := chunk.GetFixedLen(c.Histogram.Tp)
if size != -1 {
return float64(size) * notNullRatio
}
// Keep two decimal place.
// size of varchar type is LEN + BYTE, so we minus 1 here.
return math.Round(float64(c.TotColSize)/float64(count)*100)/100 - 1
}
// AppendBucket appends a bucket into `hg`.
func (hg *Histogram) AppendBucket(lower *types.Datum, upper *types.Datum, count, repeat int64) {
hg.Buckets = append(hg.Buckets, Bucket{Count: count, Repeat: repeat})
hg.Bounds.AppendDatum(0, lower)
hg.Bounds.AppendDatum(0, upper)
}
func (hg *Histogram) updateLastBucket(upper *types.Datum, count, repeat int64) {
len := hg.Len()
hg.Bounds.TruncateTo(2*len - 1)
hg.Bounds.AppendDatum(0, upper)
hg.Buckets[len-1] = Bucket{Count: count, Repeat: repeat}
}
// DecodeTo decodes the histogram bucket values into `Tp`.
func (hg *Histogram) DecodeTo(tp *types.FieldType, timeZone *time.Location) error {
oldIter := chunk.NewIterator4Chunk(hg.Bounds)
hg.Bounds = chunk.NewChunkWithCapacity([]*types.FieldType{tp}, oldIter.Len())
hg.Tp = tp
for row := oldIter.Begin(); row != oldIter.End(); row = oldIter.Next() {
datum, err := tablecodec.DecodeColumnValue(row.GetBytes(0), tp, timeZone)
if err != nil {
return errors.Trace(err)
}
hg.Bounds.AppendDatum(0, &datum)
}
return nil
}
// ConvertTo converts the histogram bucket values into `Tp`.
func (hg *Histogram) ConvertTo(sc *stmtctx.StatementContext, tp *types.FieldType) (*Histogram, error) {
hist := NewHistogram(hg.ID, hg.NDV, hg.NullCount, hg.LastUpdateVersion, tp, hg.Len(), hg.TotColSize)
iter := chunk.NewIterator4Chunk(hg.Bounds)
for row := iter.Begin(); row != iter.End(); row = iter.Next() {
d := row.GetDatum(0, hg.Tp)
d, err := d.ConvertTo(sc, tp)
if err != nil {
return nil, errors.Trace(err)
}
hist.Bounds.AppendDatum(0, &d)
}
hist.Buckets = hg.Buckets
return hist, nil
}
// Len is the number of buckets in the histogram.
func (hg *Histogram) Len() int {
return len(hg.Buckets)
}
// HistogramEqual tests if two histograms are equal.
func HistogramEqual(a, b *Histogram, ignoreID bool) bool {
if ignoreID {
old := b.ID
b.ID = a.ID
defer func() { b.ID = old }()
}
return bytes.Equal([]byte(a.ToString(0)), []byte(b.ToString(0)))
}
// ValueToString converts a possible encoded value to a formatted string. If the value is encoded, then
// idxCols equals to number of origin values, else idxCols is 0.
func ValueToString(value *types.Datum, idxCols int) (string, error) {
if idxCols == 0 {
return value.ToString()
}
// Ignore the error and treat remaining part that cannot decode successfully as bytes.
decodedVals, remained, err := codec.DecodeRange(value.GetBytes(), idxCols)
// Ignore err explicit to pass errcheck.
_ = err
if len(remained) > 0 {
decodedVals = append(decodedVals, types.NewBytesDatum(remained))
}
str, err := types.DatumsToString(decodedVals, true)
return str, err
}
// BucketToString change the given bucket to string format.
func (hg *Histogram) BucketToString(bktID, idxCols int) string {
upperVal, err := ValueToString(hg.GetUpper(bktID), idxCols)
terror.Log(errors.Trace(err))
lowerVal, err := ValueToString(hg.GetLower(bktID), idxCols)
terror.Log(errors.Trace(err))
return fmt.Sprintf("num: %d lower_bound: %s upper_bound: %s repeats: %d", hg.bucketCount(bktID), lowerVal, upperVal, hg.Buckets[bktID].Repeat)
}
// ToString gets the string representation for the histogram.
func (hg *Histogram) ToString(idxCols int) string {
strs := make([]string, 0, hg.Len()+1)
if idxCols > 0 {
strs = append(strs, fmt.Sprintf("index:%d ndv:%d", hg.ID, hg.NDV))
} else {
strs = append(strs, fmt.Sprintf("column:%d ndv:%d totColSize:%d", hg.ID, hg.NDV, hg.TotColSize))
}
for i := 0; i < hg.Len(); i++ {
strs = append(strs, hg.BucketToString(i, idxCols))
}
return strings.Join(strs, "\n")
}
// equalRowCount estimates the row count where the column equals to value.
func (hg *Histogram) equalRowCount(value types.Datum) float64 {
index, match := hg.Bounds.LowerBound(0, &value)
// Since we store the lower and upper bound together, if the index is an odd number, then it points to a upper bound.
if index%2 == 1 {
if match {
return float64(hg.Buckets[index/2].Repeat)
}
return hg.notNullCount() / float64(hg.NDV)
}
if match {
cmp := chunk.GetCompareFunc(hg.Tp)
if cmp(hg.Bounds.GetRow(index), 0, hg.Bounds.GetRow(index+1), 0) == 0 {
return float64(hg.Buckets[index/2].Repeat)
}
return hg.notNullCount() / float64(hg.NDV)
}
return 0
}
// greaterRowCount estimates the row count where the column greater than value.
func (hg *Histogram) greaterRowCount(value types.Datum) float64 {
gtCount := hg.notNullCount() - hg.lessRowCount(value) - hg.equalRowCount(value)
return math.Max(0, gtCount)
}
// LessRowCountWithBktIdx estimates the row count where the column less than value.
func (hg *Histogram) LessRowCountWithBktIdx(value types.Datum) (float64, int) {
// All the values are null.
if hg.Bounds.NumRows() == 0 {
return 0, 0
}
index, match := hg.Bounds.LowerBound(0, &value)
if index == hg.Bounds.NumRows() {
return hg.notNullCount(), hg.Len() - 1
}
// Since we store the lower and upper bound together, so dividing the index by 2 will get the bucket index.
bucketIdx := index / 2
curCount, curRepeat := float64(hg.Buckets[bucketIdx].Count), float64(hg.Buckets[bucketIdx].Repeat)
preCount := float64(0)
if bucketIdx > 0 {
preCount = float64(hg.Buckets[bucketIdx-1].Count)
}
if index%2 == 1 {
if match {
return curCount - curRepeat, bucketIdx
}
return preCount + hg.calcFraction(bucketIdx, &value)*(curCount-curRepeat-preCount), bucketIdx
}
return preCount, bucketIdx
}
func (hg *Histogram) lessRowCount(value types.Datum) float64 {
result, _ := hg.LessRowCountWithBktIdx(value)
return result
}
// BetweenRowCount estimates the row count where column greater or equal to a and less than b.
func (hg *Histogram) BetweenRowCount(a, b types.Datum) float64 {
lessCountA := hg.lessRowCount(a)
lessCountB := hg.lessRowCount(b)
// If lessCountA is not less than lessCountB, it may be that they fall to the same bucket and we cannot estimate
// the fraction, so we use `totalCount / NDV` to estimate the row count, but the result should not greater than
// lessCountB or notNullCount-lessCountA.
if lessCountA >= lessCountB && hg.NDV > 0 {
result := math.Min(lessCountB, hg.notNullCount()-lessCountA)
return math.Min(result, hg.notNullCount()/float64(hg.NDV))
}
return lessCountB - lessCountA
}
// TotalRowCount returns the total count of this histogram.
func (hg *Histogram) TotalRowCount() float64 {
return hg.notNullCount() + float64(hg.NullCount)
}
// notNullCount indicates the count of non-null values in column histogram and single-column index histogram,
// for multi-column index histogram, since we cannot define null for the row, we treat all rows as non-null, that means,
// notNullCount would return same value as TotalRowCount for multi-column index histograms.
func (hg *Histogram) notNullCount() float64 {
if hg.Len() == 0 {
return 0
}
return float64(hg.Buckets[hg.Len()-1].Count)
}
// mergeBuckets is used to Merge every two neighbor buckets.
func (hg *Histogram) mergeBuckets(bucketIdx int) {
curBuck := 0
c := chunk.NewChunkWithCapacity([]*types.FieldType{hg.Tp}, bucketIdx)
for i := 0; i+1 <= bucketIdx; i += 2 {
hg.Buckets[curBuck] = hg.Buckets[i+1]
c.AppendDatum(0, hg.GetLower(i))
c.AppendDatum(0, hg.GetUpper(i+1))
curBuck++
}
if bucketIdx%2 == 0 {
hg.Buckets[curBuck] = hg.Buckets[bucketIdx]
c.AppendDatum(0, hg.GetLower(bucketIdx))
c.AppendDatum(0, hg.GetUpper(bucketIdx))
curBuck++
}
hg.Bounds = c
hg.Buckets = hg.Buckets[:curBuck]
}
// GetIncreaseFactor will return a factor of data increasing after the last analysis.
func (hg *Histogram) GetIncreaseFactor(totalCount int64) float64 {
columnCount := hg.TotalRowCount()
if columnCount == 0 {
// avoid dividing by 0
return 1.0
}
return float64(totalCount) / columnCount
}
func (hg *Histogram) bucketCount(idx int) int64 {
if idx == 0 {
return hg.Buckets[0].Count
}
return hg.Buckets[idx].Count - hg.Buckets[idx-1].Count
}
// HistogramToProto converts Histogram to its protobuf representation.
// Note that when this is used, the lower/upper bound in the bucket must be BytesDatum.
func HistogramToProto(hg *Histogram) *tipb.Histogram {
protoHg := &tipb.Histogram{
Ndv: hg.NDV,
}
for i := 0; i < hg.Len(); i++ {
bkt := &tipb.Bucket{
Count: hg.Buckets[i].Count,
LowerBound: hg.GetLower(i).GetBytes(),
UpperBound: hg.GetUpper(i).GetBytes(),
Repeats: hg.Buckets[i].Repeat,
}
protoHg.Buckets = append(protoHg.Buckets, bkt)
}
return protoHg
}
// HistogramFromProto converts Histogram from its protobuf representation.
// Note that we will set BytesDatum for the lower/upper bound in the bucket, the decode will
// be after all histograms merged.
func HistogramFromProto(protoHg *tipb.Histogram) *Histogram {
tp := types.NewFieldType(mysql.TypeBlob)
hg := NewHistogram(0, protoHg.Ndv, 0, 0, tp, len(protoHg.Buckets), 0)
for _, bucket := range protoHg.Buckets {
lower, upper := types.NewBytesDatum(bucket.LowerBound), types.NewBytesDatum(bucket.UpperBound)
hg.AppendBucket(&lower, &upper, bucket.Count, bucket.Repeats)
}
return hg
}
func (hg *Histogram) popFirstBucket() {
hg.Buckets = hg.Buckets[1:]
c := chunk.NewChunkWithCapacity([]*types.FieldType{hg.Tp, hg.Tp}, hg.Bounds.NumRows()-2)
c.Append(hg.Bounds, 2, hg.Bounds.NumRows())
hg.Bounds = c
}
// IsIndexHist checks whether current histogram is one for index.
func (hg *Histogram) IsIndexHist() bool {
return hg.Tp.Tp == mysql.TypeBlob
}
// MergeHistograms merges two histograms.
func MergeHistograms(sc *stmtctx.StatementContext, lh *Histogram, rh *Histogram, bucketSize int) (*Histogram, error) {
if lh.Len() == 0 {
return rh, nil
}
if rh.Len() == 0 {
return lh, nil
}
lh.NDV += rh.NDV
lLen := lh.Len()
cmp, err := lh.GetUpper(lLen-1).CompareDatum(sc, rh.GetLower(0))
if err != nil {
return nil, errors.Trace(err)
}
offset := int64(0)
if cmp == 0 {
lh.NDV--
lh.updateLastBucket(rh.GetUpper(0), lh.Buckets[lLen-1].Count+rh.Buckets[0].Count, rh.Buckets[0].Repeat)
offset = rh.Buckets[0].Count
rh.popFirstBucket()
}
for lh.Len() > bucketSize {
lh.mergeBuckets(lh.Len() - 1)
}
if rh.Len() == 0 {
return lh, nil
}
for rh.Len() > bucketSize {
rh.mergeBuckets(rh.Len() - 1)
}
lCount := lh.Buckets[lh.Len()-1].Count
rCount := rh.Buckets[rh.Len()-1].Count - offset
lAvg := float64(lCount) / float64(lh.Len())
rAvg := float64(rCount) / float64(rh.Len())
for lh.Len() > 1 && lAvg*2 <= rAvg {
lh.mergeBuckets(lh.Len() - 1)
lAvg *= 2
}
for rh.Len() > 1 && rAvg*2 <= lAvg {
rh.mergeBuckets(rh.Len() - 1)
rAvg *= 2
}
for i := 0; i < rh.Len(); i++ {
lh.AppendBucket(rh.GetLower(i), rh.GetUpper(i), rh.Buckets[i].Count+lCount-offset, rh.Buckets[i].Repeat)
}
for lh.Len() > bucketSize {
lh.mergeBuckets(lh.Len() - 1)
}
return lh, nil
}
// AvgCountPerNotNullValue gets the average row count per value by the data of histogram.
func (hg *Histogram) AvgCountPerNotNullValue(totalCount int64) float64 {
factor := hg.GetIncreaseFactor(totalCount)
totalNotNull := hg.notNullCount() * factor
curNDV := float64(hg.NDV) * factor
curNDV = math.Max(curNDV, 1)
return totalNotNull / curNDV
}
func (hg *Histogram) outOfRange(val types.Datum) bool {
if hg.Len() == 0 {
return true
}
return chunk.Compare(hg.Bounds.GetRow(0), 0, &val) > 0 ||
chunk.Compare(hg.Bounds.GetRow(hg.Bounds.NumRows()-1), 0, &val) < 0
}
// Copy deep copies the histogram.
func (hg *Histogram) Copy() *Histogram {
newHist := *hg
newHist.Bounds = hg.Bounds.CopyConstruct()
newHist.Buckets = make([]Bucket, 0, len(hg.Buckets))
newHist.Buckets = append(newHist.Buckets, hg.Buckets...)
return &newHist
}
// RemoveUpperBound removes the upper bound from histogram.
// It is used when merge stats for incremental analyze.
func (hg *Histogram) RemoveUpperBound() *Histogram {
hg.Buckets[hg.Len()-1].Count -= hg.Buckets[hg.Len()-1].Repeat
hg.Buckets[hg.Len()-1].Repeat = 0
return hg
}
// TruncateHistogram truncates the histogram to `numBkt` buckets.
func (hg *Histogram) TruncateHistogram(numBkt int) *Histogram {
hist := hg.Copy()
hist.Buckets = hist.Buckets[:numBkt]
hist.Bounds.TruncateTo(numBkt * 2)
return hist
}
// Column represents a column histogram.
type Column struct {
Histogram
*CMSketch
PhysicalID int64
Count int64
Info *model.ColumnInfo
IsHandle bool
}
func (c *Column) String() string {
return c.Histogram.ToString(0)
}
// IsInvalid checks if this column is invalid.
func (c *Column) IsInvalid(sc *stmtctx.StatementContext, collPseudo bool) bool {
if collPseudo {
return true
}
return c.TotalRowCount() == 0 || (c.NDV > 0 && c.Len() == 0)
}
func (c *Column) equalRowCount(sc *stmtctx.StatementContext, val types.Datum, modifyCount int64) (float64, error) {
if val.IsNull() {
return float64(c.NullCount), nil
}
// All the values are null.
if c.Histogram.Bounds.NumRows() == 0 {
return 0.0, nil
}
if c.NDV > 0 && c.outOfRange(val) {
return float64(modifyCount) / float64(c.NDV), nil
}
if c.CMSketch != nil {
count, err := c.CMSketch.queryValue(sc, val)
return float64(count), errors.Trace(err)
}
return c.Histogram.equalRowCount(val), nil
}
// GetColumnRowCount estimates the row count by a slice of Range.
func (c *Column) GetColumnRowCount(sc *stmtctx.StatementContext, ranges []*ranger.Range, modifyCount int64, pkIsHandle bool) (float64, error) {
var rowCount float64
for _, rg := range ranges {
cmp, err := rg.LowVal[0].CompareDatum(sc, &rg.HighVal[0])
if err != nil {
return 0, errors.Trace(err)
}
if cmp == 0 {
// the point case.
if !rg.LowExclude && !rg.HighExclude {
// In this case, the row count is at most 1.
if pkIsHandle {
rowCount += 1
continue
}
var cnt float64
cnt, err = c.equalRowCount(sc, rg.LowVal[0], modifyCount)
if err != nil {
return 0, errors.Trace(err)
}
rowCount += cnt
}
continue
}
rangeVals := enumRangeValues(rg.LowVal[0], rg.HighVal[0], rg.LowExclude, rg.HighExclude)
// The small range case.
if rangeVals != nil {
for _, val := range rangeVals {
cnt, err := c.equalRowCount(sc, val, modifyCount)
if err != nil {
return 0, err
}
rowCount += cnt
}
continue
}
// The interval case.
cnt := c.BetweenRowCount(rg.LowVal[0], rg.HighVal[0])
if (c.outOfRange(rg.LowVal[0]) && !rg.LowVal[0].IsNull()) || c.outOfRange(rg.HighVal[0]) {
cnt += float64(modifyCount) / outOfRangeBetweenRate
}
// `betweenRowCount` returns count for [l, h) range, we adjust cnt for boudaries here.
// Note that, `cnt` does not include null values, we need specially handle cases
// where null is the lower bound.
if rg.LowExclude && !rg.LowVal[0].IsNull() {
lowCnt, err := c.equalRowCount(sc, rg.LowVal[0], modifyCount)
if err != nil {
return 0, errors.Trace(err)
}
cnt -= lowCnt
}
if !rg.LowExclude && rg.LowVal[0].IsNull() {
cnt += float64(c.NullCount)
}
if !rg.HighExclude {
highCnt, err := c.equalRowCount(sc, rg.HighVal[0], modifyCount)
if err != nil {
return 0, errors.Trace(err)
}
cnt += highCnt
}
rowCount += cnt
}
if rowCount > c.TotalRowCount() {
rowCount = c.TotalRowCount()
} else if rowCount < 0 {
rowCount = 0
}
return rowCount, nil
}
// Index represents an index histogram.
type Index struct {
Histogram
*CMSketch
Info *model.IndexInfo
}
func (idx *Index) String() string {
return idx.Histogram.ToString(len(idx.Info.Columns))
}
// IsInvalid checks if this index is invalid.
func (idx *Index) IsInvalid(collPseudo bool) bool {
return collPseudo || idx.TotalRowCount() == 0
}
var nullKeyBytes, _ = codec.EncodeKey(nil, nil, types.NewDatum(nil))
func (idx *Index) equalRowCount(sc *stmtctx.StatementContext, b []byte, modifyCount int64) (float64, error) {
if len(idx.Info.Columns) == 1 {
if bytes.Equal(b, nullKeyBytes) {
return float64(idx.NullCount), nil
}
}
val := types.NewBytesDatum(b)
if idx.NDV > 0 && idx.outOfRange(val) {
return float64(modifyCount) / (float64(idx.NDV)), nil
}
if idx.CMSketch != nil {
return float64(idx.CMSketch.QueryBytes(b)), nil
}
return idx.Histogram.equalRowCount(val), nil
}
// GetRowCount returns the row count of the given ranges.
// It uses the modifyCount to adjust the influence of modifications on the table.
func (idx *Index) GetRowCount(sc *stmtctx.StatementContext, indexRanges []*ranger.Range, modifyCount int64) (float64, error) {
totalCount := float64(0)
isSingleCol := len(idx.Info.Columns) == 1
for _, indexRange := range indexRanges {
lb, err := codec.EncodeKey(sc, nil, indexRange.LowVal...)
if err != nil {
return 0, err
}
rb, err := codec.EncodeKey(sc, nil, indexRange.HighVal...)
if err != nil {
return 0, err
}
fullLen := len(indexRange.LowVal) == len(indexRange.HighVal) && len(indexRange.LowVal) == len(idx.Info.Columns)
if bytes.Equal(lb, rb) {
if indexRange.LowExclude || indexRange.HighExclude {
continue
}
if fullLen {
// At most 1 in this case.
if idx.Info.Unique {
totalCount += 1
continue
}
count, err := idx.equalRowCount(sc, lb, modifyCount)
if err != nil {
return 0, err
}
totalCount += count
continue
}
}
if indexRange.LowExclude {
lb = kv.Key(lb).PrefixNext()
}
if !indexRange.HighExclude {
rb = kv.Key(rb).PrefixNext()
}
l := types.NewBytesDatum(lb)
r := types.NewBytesDatum(rb)
totalCount += idx.BetweenRowCount(l, r)
lowIsNull := bytes.Equal(lb, nullKeyBytes)
if (idx.outOfRange(l) && !(isSingleCol && lowIsNull)) || idx.outOfRange(r) {
totalCount += float64(modifyCount) / outOfRangeBetweenRate
}
if isSingleCol && lowIsNull {
totalCount += float64(idx.NullCount)
}
}
if totalCount > idx.TotalRowCount() {
totalCount = idx.TotalRowCount()
}
return totalCount, nil
}
func (idx *Index) outOfRange(val types.Datum) bool {
if idx.Histogram.Len() == 0 {
return true
}
withInLowBoundOrPrefixMatch := chunk.Compare(idx.Bounds.GetRow(0), 0, &val) <= 0 ||
matchPrefix(idx.Bounds.GetRow(0), 0, &val)
withInHighBound := chunk.Compare(idx.Bounds.GetRow(idx.Bounds.NumRows()-1), 0, &val) >= 0
return !withInLowBoundOrPrefixMatch || !withInHighBound
}
// matchPrefix checks whether ad is the prefix of value
func matchPrefix(row chunk.Row, colIdx int, ad *types.Datum) bool {
switch ad.Kind() {
case types.KindString, types.KindBytes:
return strings.HasPrefix(row.GetString(colIdx), ad.GetString())
}
return false
}