forked from FFTW/fftw3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimd-avx2.h
414 lines (366 loc) · 13 KB
/
simd-avx2.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* Modifications by Romain Dolbeau & Erik Lindahl, derived from simd-avx.h
* Romain Dolbeau hereby places his modifications in the public domain.
* Erik Lindahl hereby places his modifications in the public domain.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
#error "AVX2 only works in single or double precision"
#endif
#ifdef FFTW_SINGLE
# define DS(d,s) s /* single-precision option */
# define SUFF(name) name ## s
#else
# define DS(d,s) d /* double-precision option */
# define SUFF(name) name ## d
#endif
#define SIMD_SUFFIX _avx2 /* for renaming */
#define VL DS(2, 4) /* SIMD complex vector length */
#define SIMD_VSTRIDE_OKA(x) ((x) == 2)
#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
#if defined(__GNUC__) && !defined(__AVX2__) /* sanity check */
#error "compiling simd-avx2.h without avx2 support"
#endif
#ifdef _MSC_VER
#ifndef inline
#define inline __inline
#endif
#endif
#include <immintrin.h>
typedef DS(__m256d, __m256) V;
#define VADD SUFF(_mm256_add_p)
#define VSUB SUFF(_mm256_sub_p)
#define VMUL SUFF(_mm256_mul_p)
#define VXOR SUFF(_mm256_xor_p)
#define VSHUF SUFF(_mm256_shuffle_p)
#define VPERM1 SUFF(_mm256_permute_p)
#define SHUFVALD(fp0,fp1) \
(((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0)))
#define SHUFVALS(fp0,fp1,fp2,fp3) \
(((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
#define VDUPL(x) DS(_mm256_movedup_pd(x), _mm256_moveldup_ps(x))
#define VDUPH(x) DS(_mm256_permute_pd(x,SHUFVALD(1,1)), _mm256_movehdup_ps(x))
#define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1))
#define DVK(var, val) V var = VLIT(val, val)
#define LDK(x) x
static inline V LDA(const R *x, INT ivs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
(void)ivs; /* UNUSED */
return SUFF(_mm256_loadu_p)(x);
}
static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
(void)ovs; /* UNUSED */
SUFF(_mm256_storeu_p)(x, v);
}
#if FFTW_SINGLE
# ifdef _MSC_VER
/* Temporarily disable the warning "uninitialized local variable
'name' used" and runtime checks for using a variable before it is
defined which is erroneously triggered by the LOADL0 / LOADH macros
as they only modify VAL partly each. */
# ifndef __INTEL_COMPILER
# pragma warning(disable : 4700)
# pragma runtime_checks("u", off)
# endif
# endif
# ifdef __INTEL_COMPILER
# pragma warning(disable : 592)
# endif
#define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
#define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
#define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val)
#define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val)
static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
__m128 l0, l1, h0, h1;
(void)aligned_like; /* UNUSED */
#if defined(__ICC) || (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ > 8)
l0 = LOADL(x, SUFF(_mm_undefined_p)());
l1 = LOADL(x + ivs, SUFF(_mm_undefined_p)());
h0 = LOADL(x + 2*ivs, SUFF(_mm_undefined_p)());
h1 = LOADL(x + 3*ivs, SUFF(_mm_undefined_p)());
#else
l0 = LOADL(x, l0);
l1 = LOADL(x + ivs, l1);
h0 = LOADL(x + 2*ivs, h0);
h1 = LOADL(x + 3*ivs, h1);
#endif
l0 = SUFF(_mm_movelh_p)(l0,l1);
h0 = SUFF(_mm_movelh_p)(h0,h1);
return _mm256_insertf128_ps(_mm256_castps128_ps256(l0), h0, 1);
}
# ifdef _MSC_VER
# ifndef __INTEL_COMPILER
# pragma warning(default : 4700)
# pragma runtime_checks("u", restore)
# endif
# endif
# ifdef __INTEL_COMPILER
# pragma warning(default : 592)
# endif
static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
{
__m128 h = _mm256_extractf128_ps(v, 1);
__m128 l = _mm256_castps256_ps128(v);
(void)aligned_like; /* UNUSED */
/* WARNING: the extra_iter hack depends upon STOREL occurring
after STOREH */
STOREH(x + 3*ovs, h);
STOREL(x + 2*ovs, h);
STOREH(x + ovs, l);
STOREL(x, l);
}
#define STM2(x, v, ovs, aligned_like) /* no-op */
static inline void STN2(R *x, V v0, V v1, INT ovs)
{
V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1));
V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3));
__m128 h0 = _mm256_extractf128_ps(x0, 1);
__m128 l0 = _mm256_castps256_ps128(x0);
__m128 h1 = _mm256_extractf128_ps(x1, 1);
__m128 l1 = _mm256_castps256_ps128(x1);
*(__m128 *)(x + 3*ovs) = h1;
*(__m128 *)(x + 2*ovs) = h0;
*(__m128 *)(x + 1*ovs) = l1;
*(__m128 *)(x + 0*ovs) = l0;
}
#define STM4(x, v, ovs, aligned_like) /* no-op */
#define STN4(x, v0, v1, v2, v3, ovs) \
{ \
V xxx0, xxx1, xxx2, xxx3; \
V yyy0, yyy1, yyy2, yyy3; \
xxx0 = _mm256_unpacklo_ps(v0, v2); \
xxx1 = _mm256_unpackhi_ps(v0, v2); \
xxx2 = _mm256_unpacklo_ps(v1, v3); \
xxx3 = _mm256_unpackhi_ps(v1, v3); \
yyy0 = _mm256_unpacklo_ps(xxx0, xxx2); \
yyy1 = _mm256_unpackhi_ps(xxx0, xxx2); \
yyy2 = _mm256_unpacklo_ps(xxx1, xxx3); \
yyy3 = _mm256_unpackhi_ps(xxx1, xxx3); \
*(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0); \
*(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1); \
*(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1); \
*(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1); \
*(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2); \
*(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1); \
*(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3); \
*(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1); \
}
#else
static inline __m128d VMOVAPD_LD(const R *x)
{
/* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x))
into a 256-bit vmovapd, which requires 32-byte aligment instead of
16-byte alignment.
Force the use of vmovapd via asm until compilers stabilize.
*/
#if defined(__GNUC__)
__m128d var;
__asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0]));
return var;
#else
return *(const __m128d *)x;
#endif
}
static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
V var;
(void)aligned_like; /* UNUSED */
var = _mm256_castpd128_pd256(VMOVAPD_LD(x));
var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1);
return var;
}
static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
/* WARNING: the extra_iter hack depends upon the store of the low
part occurring after the store of the high part */
*(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1);
*(__m128d *)x = _mm256_castpd256_pd128(v);
}
#define STM2 ST
#define STN2(x, v0, v1, ovs) /* nop */
#define STM4(x, v, ovs, aligned_like) /* no-op */
/* STN4 is a macro, not a function, thanks to Visual C++ developers
deciding "it would be infrequent that people would want to pass more
than 3 [__m128 parameters] by value." Even though the comment
was made about __m128 parameters, it appears to apply to __m256
parameters as well. */
#define STN4(x, v0, v1, v2, v3, ovs) \
{ \
V xxx0, xxx1, xxx2, xxx3; \
xxx0 = _mm256_unpacklo_pd(v0, v1); \
xxx1 = _mm256_unpackhi_pd(v0, v1); \
xxx2 = _mm256_unpacklo_pd(v2, v3); \
xxx3 = _mm256_unpackhi_pd(v2, v3); \
STA(x, _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \
STA(x + ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \
STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \
STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \
}
#endif
static inline V FLIP_RI(V x)
{
return VPERM1(x, DS(SHUFVALD(1, 0), SHUFVALS(1, 0, 3, 2)));
}
static inline V VCONJ(V x)
{
/* Produce a SIMD vector[VL] of (0 + -0i).
We really want to write this:
V pmpm = VLIT(-0.0, 0.0);
but historically some compilers have ignored the distiction
between +0 and -0. It looks like 'gcc-8 -fast-math' treats -0
as 0 too.
*/
union uvec {
unsigned u[8];
V v;
};
static const union uvec pmpm = {
#ifdef FFTW_SINGLE
{ 0x00000000, 0x80000000, 0x00000000, 0x80000000,
0x00000000, 0x80000000, 0x00000000, 0x80000000 }
#else
{ 0x00000000, 0x00000000, 0x00000000, 0x80000000,
0x00000000, 0x00000000, 0x00000000, 0x80000000 }
#endif
};
return VXOR(pmpm.v, x);
}
static inline V VBYI(V x)
{
return FLIP_RI(VCONJ(x));
}
/* FMA support */
#define VFMA SUFF(_mm256_fmadd_p)
#define VFNMS SUFF(_mm256_fnmadd_p)
#define VFMS SUFF(_mm256_fmsub_p)
#define VFMAI(b, c) SUFF(_mm256_addsub_p)(c, FLIP_RI(b)) /* VADD(c, VBYI(b)) */
#define VFNMSI(b, c) VSUB(c, VBYI(b))
#define VFMACONJ(b,c) VADD(VCONJ(b),c)
#define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
#define VFNMSCONJ(b,c) SUFF(_mm256_addsub_p)(c, b) /* VSUB(c, VCONJ(b)) */
static inline V VZMUL(V tx, V sr)
{
/* V tr = VDUPL(tx); */
/* V ti = VDUPH(tx); */
/* tr = VMUL(sr, tr); */
/* sr = VBYI(sr); */
/* return VFMA(ti, sr, tr); */
return SUFF(_mm256_fmaddsub_p)(sr, VDUPL(tx), VMUL(FLIP_RI(sr), VDUPH(tx)));
}
static inline V VZMULJ(V tx, V sr)
{
/* V tr = VDUPL(tx); */
/* V ti = VDUPH(tx); */
/* tr = VMUL(sr, tr); */
/* sr = VBYI(sr); */
/* return VFNMS(ti, sr, tr); */
return SUFF(_mm256_fmsubadd_p)(sr, VDUPL(tx), VMUL(FLIP_RI(sr), VDUPH(tx)));
}
static inline V VZMULI(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
ti = VMUL(ti, sr);
sr = VBYI(sr);
return VFMS(tr, sr, ti);
/*
* Keep the old version
* (2 permute, 1 shuffle, 1 constant load (L1), 1 xor, 2 fp), since the below FMA one
* would be 2 permute, 1 shuffle, 1 xor (setzero), 3 fp), but with a longer pipeline.
*
* Alternative new fma version:
* return SUFF(_mm256_addsub_p)(SUFF(_mm256_fnmadd_p)(sr, VDUPH(tx), SUFF(_mm256_setzero_p)()),
* VMUL(FLIP_RI(sr), VDUPL(tx)));
*/
}
static inline V VZMULIJ(V tx, V sr)
{
/* V tr = VDUPL(tx); */
/* V ti = VDUPH(tx); */
/* ti = VMUL(ti, sr); */
/* sr = VBYI(sr); */
/* return VFMA(tr, sr, ti); */
return SUFF(_mm256_fmaddsub_p)(sr, VDUPH(tx), VMUL(FLIP_RI(sr), VDUPL(tx)));
}
/* twiddle storage #1: compact, slower */
#ifdef FFTW_SINGLE
# define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x}
#else
# define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
#endif
#define TWVL1 (VL)
static inline V BYTW1(const R *t, V sr)
{
return VZMUL(LDA(t, 2, t), sr);
}
static inline V BYTWJ1(const R *t, V sr)
{
return VZMULJ(LDA(t, 2, t), sr);
}
/* twiddle storage #2: twice the space, faster (when in cache) */
#ifdef FFTW_SINGLE
# define VTW2(v,x) \
{TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
{TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \
{TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \
{TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x}
#else
# define VTW2(v,x) \
{TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
{TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
#endif
#define TWVL2 (2 * VL)
static inline V BYTW2(const R *t, V sr)
{
const V *twp = (const V *)t;
V si = FLIP_RI(sr);
V tr = twp[0], ti = twp[1];
return VFMA(tr, sr, VMUL(ti, si));
}
static inline V BYTWJ2(const R *t, V sr)
{
const V *twp = (const V *)t;
V si = FLIP_RI(sr);
V tr = twp[0], ti = twp[1];
return VFNMS(ti, si, VMUL(tr, sr));
}
/* twiddle storage #3 */
#define VTW3 VTW1
#define TWVL3 TWVL1
/* twiddle storage for split arrays */
#ifdef FFTW_SINGLE
# define VTWS(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
{TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \
{TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \
{TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x}
#else
# define VTWS(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
{TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
#endif
#define TWVLS (2 * VL)
#define VLEAVE _mm256_zeroupper
#include "simd-common.h"