forked from mst272/LLM-Dojo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_example.sh
37 lines (31 loc) · 1.04 KB
/
run_example.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
DATA_PATH=''
OUTPUT_PATH=""
MODEL_PATH=""
# deepspeed 启动
deepspeed --include localhost:0,1 main_train.py\
--train_args_path "sft_args" \
--train_data_path "$DATA_PATH" \
--model_name_or_path "$MODEL_PATH" \
--max_len 1024 \
--num_train_epochs 1 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 4 \
--task_type "sft" \
--train_mode "qlora" \
--output_dir "$OUTPUT_PATH" \
--save_strategy "steps" \
--save_steps 500 \
--save_total_limit 5 \
--learning_rate 2e-4 \
--warmup_steps 10 \
--logging_steps 1 \
--lr_scheduler_type "cosine_with_min_lr" \
--gradient_checkpointing True \
--report_to "wandb" \
--deepspeed './train_args/deepspeed_config/ds_config_zero2.json' \
--bf16 True
# task_type:[pretrain, sft, dpo_multi, dpo_single]
# train_mode:[qlora, lora, full]
# train_args_path: [sft_args,dpo_args]
# python main_train.py --train_data_path 数据集路径 --model_name_or_path 模型路径 ......同上述传入参数