forked from pytorch-labs/gpt-fast
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtp.py
150 lines (118 loc) · 5.07 KB
/
tp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
from typing import Optional, List
import torch
from torch import nn
import torch.distributed as dist
from torch.distributed import _functional_collectives as funcol
from model import Transformer, Attention, FeedForward
from quantize import WeightOnlyInt4Linear, WeightOnlyInt8Linear
def _get_rank() -> int:
return int(os.environ.get("LOCAL_RANK", "0"))
def is_local():
return _get_rank() == 0
def local_break():
if is_local():
breakpoint()
dist.barrier()
def _get_world_size() -> int:
return int(os.environ.get("LOCAL_WORLD_SIZE", "1"))
def maybe_init_dist() -> Optional[int]:
try:
# provided by torchrun
rank = _get_rank()
world_size = _get_world_size()
if world_size < 2:
# too few gpus to parallelize, tp is no-op
return None
except KeyError:
# not run via torchrun, no-op
return None
dist.init_process_group(backend="nccl", rank=rank, world_size=world_size)
return rank
def _apply_tp_linear(linear: nn.Linear, style: str, weight_splits: List[int] = []) -> None:
rank = _get_rank()
world_size = _get_world_size()
# Linear's weight matrix is transposed, and is of shape
# (linear.out_features, linear.in_features)
dim_lookup = {
"colwise": (0, "out_features"),
"rowwise": (1, "in_features")
}
assert style in dim_lookup
shard_dim, size_attr = dim_lookup[style]
# ensure we can shard evenly
assert getattr(linear, size_attr) % world_size == 0
def shard(x, dim):
assert x.size(dim=dim) % world_size == 0
return torch.tensor_split(x, world_size, dim=dim)[rank]
def shard_qkv(qkv, dim, weight_splits):
q, k, v = qkv.split(weight_splits, dim=dim)
q = shard(q, dim)
k = shard(k, dim)
v = shard(v, dim)
return torch.cat((q,k,v), dim=dim)
# shard
if weight_splits:
# attention
assert len(weight_splits) == 3
if isinstance(linear, WeightOnlyInt4Linear):
sharded_weight = shard_qkv(linear.weight, shard_dim, [i//8 for i in weight_splits])
linear.scales_and_zeros = shard_qkv(linear.scales_and_zeros, 1 - shard_dim, weight_splits)
else:
sharded_weight = shard_qkv(linear.weight, shard_dim, weight_splits)
if hasattr(linear, "scales") and style == "colwise":
linear.scales = shard_qkv(linear.scales, 0, weight_splits)
else:
sharded_weight = shard(linear.weight, shard_dim)
if isinstance(linear, WeightOnlyInt4Linear):
linear.scales_and_zeros = shard(linear.scales_and_zeros, 1 - shard_dim)
if style == "rowwise":
assert linear.scales_and_zeros.shape[0] * 32 == sharded_weight.shape[1] * sharded_weight.shape[2] * sharded_weight.shape[3]
assert linear.scales_and_zeros.shape[1] == sharded_weight.shape[0] * 8
if hasattr(linear, "scales") and style == "colwise":
linear.scales = shard(linear.scales, 0)
# local_break()
linear.weight = nn.Parameter(sharded_weight, requires_grad=False)
setattr(linear, size_attr, getattr(linear, size_attr) // world_size)
# shape info should still be synced
# assert linear.weight.shape == (linear.out_features, linear.in_features)
def _apply_tp_ffn(mlp: FeedForward) -> None:
assert hasattr(mlp, "w1")
assert hasattr(mlp, "w3")
assert hasattr(mlp, "w2")
_apply_tp_linear(mlp.w1, "colwise")
_apply_tp_linear(mlp.w3, "colwise")
_apply_tp_linear(mlp.w2, "rowwise")
world_size = _get_world_size()
mlp.register_forward_hook(lambda _module, _input, output: funcol.all_reduce(
output, "sum", list(range(world_size))))
def _apply_tp_attn(attn: Attention) -> None:
assert hasattr(attn, "wqkv")
assert hasattr(attn, "wo")
kv_size = attn.n_local_heads * attn.head_dim
_apply_tp_linear(attn.wqkv, "colwise", [attn.dim, kv_size, kv_size])
_apply_tp_linear(attn.wo, "rowwise")
# overwrite
world_size = _get_world_size()
attn.n_head = attn.n_head // world_size
attn.dim = attn.dim // world_size
attn.head_dim = attn.dim // attn.n_head
attn.n_local_heads = attn.n_local_heads // world_size
attn.register_forward_hook(lambda _module, _input, output: funcol.all_reduce(
output[0], "sum", list(range(world_size))))
def _apply_tp_Transformer(Transformer: Transformer) -> None:
# overwrite config before Transformer.setup_cache is called
world_size = _get_world_size()
Transformer.config.n_head = Transformer.config.n_head // world_size
Transformer.config.dim = Transformer.config.dim // world_size
Transformer.config.n_local_heads = Transformer.config.n_local_heads // world_size
def apply_tp(model: Transformer) -> None:
_apply_tp_Transformer(model)
for block in model.layers:
# Apply to MLP
_apply_tp_ffn(block.feed_forward)
_apply_tp_attn(block.attention)