Optimization for Machine Learning CS-439

Lecture 4: Projected, Proximal and Subgradient Descent

Martin Jaggi

EPFL – github.com/epfml/OptML_course

March 15, 2019

Projecting onto ℓ_1 -balls

Projecting onto ℓ_1 -balls

Theorem

Let $\mathbf{v} \in \mathbb{R}^d$, $R \in \mathbb{R}_+$, $X = B_1(R)$ the ℓ_1 -ball around 0 of radius R. The projection

$$
\Pi_X(\mathbf{v}) = \operatorname*{argmin}_{\mathbf{x} \in X} \|\mathbf{x} - \mathbf{v}\|^2
$$

of **v** *onto* $B_1(R)$ *can be computed in time* $O(d \log d)$ *.*

This can be improved to time $O(d)$ by avoiding sorting.

Section 3.6

Proximal Gradient Descent

Composite optimization problems

Consider objective functions composed as

$$
f(\mathbf{x}) := g(\mathbf{x}) + h(\mathbf{x})
$$

where *g* is a "nice" function, where as *h* is a "simple" additional term, which however doesn't satisfy the assumptions of niceness which we used in the convergence analysis so far.

In particular, an important case is when h is not differentiable.

Idea

The classical gradient step for minimizing *g*:

$$
\mathbf{x}_{t+1} = \underset{\mathbf{y}}{\text{argmin}} \ \ g(\mathbf{x}_t) + \nabla g(\mathbf{x}_t)^\top (\mathbf{y} - \mathbf{x}_t) + \frac{1}{2\gamma} \|\mathbf{y} - \mathbf{x}_t\|^2.
$$

For the stepsize $\gamma:=\frac{1}{L}$ it exactly minimizes the local quadratic model of g at our current iterate \mathbf{x}_t , formed by the smoothness property with parameter *L*.

Now for $f = q + h$, keep the same for q, and add h unmodified.

$$
\mathbf{x}_{t+1} := \underset{\mathbf{y}}{\operatorname{argmin}} \ g(\mathbf{x}_t) + \nabla g(\mathbf{x}_t)^\top (\mathbf{y} - \mathbf{x}_t) + \frac{1}{2\gamma} \|\mathbf{y} - \mathbf{x}_t\|^2 + h(\mathbf{y})
$$

$$
= \underset{\mathbf{y}}{\operatorname{argmin}} \ \frac{1}{2\gamma} \|\mathbf{y} - (\mathbf{x}_t - \gamma \nabla g(\mathbf{x}_t))\|^2 + h(\mathbf{y}),
$$

the proximal gradient descent update.

EPFL Machine Learning and Optimization Laboratory 6/33

The proximal gradient descent algorithm

An iteration of proximal gradient descent is defined as

$$
\mathbf{x}_{t+1} := \text{prox}_{h,\gamma}(\mathbf{x}_t - \gamma \nabla g(\mathbf{x}_t)) \ .
$$

where the proximal mapping for a given function h, and parameter $\gamma > 0$ is defined as

$$
\operatorname{prox}_{h,\gamma}(\mathbf{z}) := \operatorname*{argmin}_{\mathbf{y}} \left\{ \frac{1}{2\gamma} ||\mathbf{y} - \mathbf{z}||^2 + h(\mathbf{y}) \right\}.
$$

The update step can be equivalently written as

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma G_{\gamma}(\mathbf{x}_t)
$$

for $G_{h,\gamma}(\mathbf{x}) := \frac{1}{\gamma} \Big(\mathbf{x} - \text{prox}_{h,\gamma}(\mathbf{x} - \gamma \nabla g(\mathbf{x})) \Big)$ being the so called generalized gradient of f.

A generalization of gradient descent?

- $h \equiv 0$: recover gradient descent
- \blacktriangleright $h \equiv \iota_X$: recover projected gradient descent!

Given a closed convex set *X*, the indicator function of the set *X* is given as the convex function

$$
\iota_X : \mathbb{R}^d \to \mathbb{R} \cup +\infty
$$

$$
\mathbf{x} \mapsto \iota_X(\mathbf{x}) := \begin{cases} 0 & \text{if } \mathbf{x} \in X, \\ +\infty & \text{otherwise.} \end{cases}
$$

Proximal mapping becomes

$$
\operatorname{prox}_{h,\gamma}(\mathbf{z}) := \operatorname*{argmin}_{\mathbf{y}} \left\{ \frac{1}{2\gamma} \|\mathbf{y} - \mathbf{z}\|^2 + \iota_X(\mathbf{y}) \right\} = \operatorname*{argmin}_{\mathbf{y} \in X} \ \|\mathbf{y} - \mathbf{z}\|^2
$$

Convergence in $O(1/\varepsilon)$ steps, and applications

Same convergence as vanilla case for smooth functions, but now for any *h*.

Cost: gradient step, plus computing the proximal mapping

Examples:

- $\blacktriangleright \ell_1$ -norm, $q = ||.||_1$ $prox_h_{\gamma}(\mathbf{z})$ is soft thresholding operator, cost $O(d \log d)$
- **I** Matrix nuclear norm, $q = ||.||_*$ $prox_{h,\gamma}(\mathbf{Z})$ is singular value thresholding operator, costs same as SVD

Chapter 4

Subgradient Descent

Subgradients

 $\widetilde{\mathsf{W}}$ at if f is not differentiable?

Definition

 $\partial f(\mathbf{x}) \subseteq \mathbb{R}^d$ is the subdifferential, the set of subgradients of f at \mathbf{x} .

Subgradients II

Example:

Subgradient condition at $x = 0$: $f(y) \ge f(0) + g(y - 0) = gy$. $\partial f(0) = [-1, 1]$

EPFL Machine Learning and Optimization Laboratory 12/33

Subgradients III

Lemma (Exercise [23\)](#page-0-0)

If $f : \textbf{dom}(f) \to \mathbb{R}$ *is differentiable at* $\mathbf{x} \in \textbf{dom}(f)$ *, then* $\partial f(\mathbf{x}) \subseteq {\nabla f(\mathbf{x})}$ *.*

Either exactly one subgradient $\nabla f(\mathbf{x})$... \ldots or no subgradient at all.

Subgradient characterization of convexity \mathcal{S} subgradient of a function \mathcal{S}

"convex = subgradients everywhere"

Lemma (Exercise [24\)](#page-0-0)

A function $f : \textbf{dom}(f) \to \mathbb{R}$ is convex if and only if $\textbf{dom}(f)$ is convex and $\partial f(\mathbf{x}) \neq \emptyset$ *for all* $x \in \textbf{dom}(f)$ *.*

Convex and Lipschitz $=$ bounded subgradients

Lemma (Exercise [25\)](#page-0-0)

Let $f : dom(f) \to \mathbb{R}$ *be convex,* $dom(f)$ *open,* $B \in \mathbb{R}_+$ *. Then the following two statements are equivalent.*

\n- (i)
$$
||\mathbf{g}|| \leq B
$$
 for all $\mathbf{x} \in \text{dom}(f)$ and all $\mathbf{g} \in \partial f(\mathbf{x})$.
\n- (ii) $|f(\mathbf{x}) - f(\mathbf{y})| \leq B \|\mathbf{x} - \mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$.
\n

Subgradient optimality condition

Lemma

Suppose that $f : \textbf{dom}(f) \to \mathbb{R}$ and $\mathbf{x} \in \textbf{dom}(f)$ *. If* $\mathbf{0} \in \partial f(\mathbf{x})$ *, then* x *is a global minimum.*

Proof

By definition of subgradients, $g = 0 \in \partial f(x)$ gives

$$
f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^\top(\mathbf{y} - \mathbf{x}) = f(\mathbf{x})
$$

for all $y \in \text{dom}(f)$, so x is a global minimum.

 \Box

Differentiability of convex functions

How "wild" can a non-differentiable convex function be?

Weierstrass function: a function that is continuous everywhere but differentiable nowhere

<https://commons.wikimedia.org/wiki/File:WeierstrassFunction.svg> EPFL Machine Learning and Optimization Laboratory 17/33

Differentiability of convex functions

Theorem ([\[Roc97,](#page-20-0) Theorem 25.5])

A convex function $f : dom(f) \to \mathbb{R}$ is differentiable almost everywhere.

In other words:

- \triangleright Set of points where *f* is non-differentiable has measure 0 (no volume).
- \blacktriangleright For all $\mathbf{x} \in \textbf{dom}(f)$ and all $\varepsilon > 0$, there is a point \mathbf{x}' such that $\|\mathbf{x} \mathbf{x}'\| < \varepsilon$ and f is differentiable at \mathbf{x}' .

The subgradient descent algorithm

Subgradient descent: choose $x_0 \in \mathbb{R}^d$.

Let $\mathbf{g}_t \in \partial f(\mathbf{x}_t)$ $\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma_t \mathbf{g}_t$

for times $t = 0, 1, \ldots$, and stepsizes $\gamma_t > 0$.

Stepsize can vary with time!

This is possible in (projected) gradient descent as well.

Lipschitz convex functions: $O(1/\varepsilon^2)$ steps Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and *B*-Lipschitz continuous with a global minimum \mathbf{x}^* ; *furthermore, suppose that* $||\mathbf{x}_0 - \mathbf{x}^*|| \leq R$ *. Choosing the constant stepsize*

$$
\gamma:=\frac{R}{B\sqrt{T}},
$$

subgradient descent yields

$$
\frac{1}{T}\sum_{t=0}^{T-1}f(\mathbf{x}_t)-f(\mathbf{x}^*)\leq \frac{RB}{\sqrt{T}}.
$$

Proof is identical to the one of Theorem [2.1,](#page-0-0) except. . .

- In vanilla analyis, now use $\mathbf{g}_t \in \partial f(\mathbf{x}_t)$ instead of $\mathbf{g}_t = \nabla f(\mathbf{x}_t)$.
- \blacktriangleright Inequality $f(\mathbf{x}_t) f(\mathbf{x}^{\star}) \leq \mathbf{g}_t^{\top}(\mathbf{x}_t \mathbf{x}^{\star})$ now follows from subgradient property instead of first-order charaterization of convexity.

EPFL Machine Learning and Optimization Laboratory 20/33

Bibliography

R. Tyrrell Rockafellar.

Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, 1997.