Skip to content

Proper implementation of ResNet-s for CIFAR10/100 in pytorch that matches description of the original paper.

License

Notifications You must be signed in to change notification settings

absolutelylost/pytorch_resnet_cifar10

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Proper ResNet Implementation for CIFAR10/CIFAR100 in pytorch

Torchvision model zoo provides number of implementations of various state-of-the-art architectures, however, most of them are defined and implemented for ImageNet. Usually it is very straightforward to use them on other datasets, but sometimes this models needs manual setup.

Unfortunately, none of the pytorch repositories with ResNets on CIFAR10 provides an implementation as described in original paper. If you just use torchvision's models on CIFAR10 you'll get the model that differs in number of layers and parameters. That is unacceptable if you want to directly compare ResNets on CIFAR10. The purpose of this repo is to provide a valid pytorch implementation of ResNet-s for CIFAR10. Following models are provided:

Name # layers # params Test err(paper) Test err(this impl.)
ResNet20 20 0.27M 8.75% 8.27%
ResNet32 32 0.46M 7.51% 7.37%
ResNet44 44 0.66M 7.17% 6.90%
ResNet56 56 0.85M 6.97% 6.61%
ResNet110 110 1.7M 6.43% 6.32%
ResNet1202 1202 19.4M 7.93%

And their implementation matches description in original paper, with comparable or better test error.

How to run?

git clone https://github.com/akamaster/pytorch_resnet_cifar10
cd pytorch_resnet_cifar10
chmod +x run.sh && ./run.sh

Details of training

This implementation follows paper in straightforward manner with some caveats. Firstly, original paper uses 45k/5k train/validation split to train data, and selects best performing model based on performance on validation set. This implementation does not do any validation testing, so if you need to compare your results on ResNet head-to-head to orginal paper's keep this in mind. Secondly, if you want to train ResNet1202 keep in mind that you need 16GB memory on GPU.

Pretrained models for download

  1. ResNet20, 8.27% err
  2. ResNet32, 7.37% err
  3. ResNet44, 6.90% err
  4. ResNet56, 6.61% err
  5. ResNet110,6.32% err
  6. ResNet1202

If you find this implementation is useful and used it in your production/academic work please cite/mention this page and author Yerlan Idelbayev.

About

Proper implementation of ResNet-s for CIFAR10/100 in pytorch that matches description of the original paper.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.7%
  • Shell 1.3%