-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun.py
89 lines (76 loc) · 3.69 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import sys
import argparse
import time
import datetime
import numpy as np
import torch
path = os.path.realpath(os.path.join(os.getcwd(), '../..'))
sys.path.insert(0, path)
def main(args):
from nnest import NestedSampler
from nnest.distributions import GeneralisedNormal
from nnest.likelihoods import Himmelblau, Rosenbrock, Gaussian, Eggbox, GaussianShell, GaussianMix
if args.base_dist == 'gen_normal':
base_dist = GeneralisedNormal(torch.zeros(args.x_dim), torch.ones(args.x_dim), torch.tensor(args.beta))
else:
base_dist = None
if args.likelihood.lower() == 'himmelblau':
like = Himmelblau(args.x_dim)
transform = lambda x: 5 * x
elif args.likelihood.lower() == 'rosenbrock':
like = Rosenbrock(args.x_dim)
transform = lambda x: 5*x
elif args.likelihood.lower() == 'gaussian':
like = Gaussian(args.x_dim, args.corr, lim=3)
transform = lambda x: 3 * x
elif args.likelihood.lower() == 'eggbox':
like = Eggbox(args.x_dim)
transform = lambda x: x * 5 * np.pi
elif args.likelihood.lower() == 'shell':
like = GaussianShell(args.x_dim)
transform = lambda x: 5 * x
elif args.likelihood.lower() == 'mixture':
like = GaussianMix(args.x_dim)
transform = lambda x: 10 * x
else:
raise ValueError('Likelihood not found')
log_dir = os.path.join(args.log_dir, args.likelihood)
log_dir += args.log_suffix
sampler = NestedSampler(like.x_dim, like, transform=transform, log_dir=log_dir,
num_live_points=args.num_live_points, hidden_dim=args.hidden_dim,
num_layers=args.num_layers, num_blocks=args.num_blocks, num_slow=args.num_slow,
use_gpu=args.use_gpu, base_dist=base_dist, scale=args.scale, flow=args.flow)
start_time = time.time()
sampler.run(train_iters=args.train_iters, mcmc_steps=args.mcmc_steps, volume_switch=args.switch,
jitter=args.jitter, mcmc_num_chains=args.mcmc_num_chains,
mcmc_dynamic_step_size=not args.mcmc_fixed_step_size)
end_time = time.time()
print('Run time %s' % datetime.timedelta(seconds=end_time - start_time))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--x_dim', type=int, default=2,
help="Dimensionality")
parser.add_argument('--train_iters', type=int, default=2000,
help="number of train iters")
parser.add_argument('--mcmc_steps', type=int, default=0)
parser.add_argument('--mcmc_num_chains', type=int, default=10)
parser.add_argument('--num_live_points', type=int, default=1000)
parser.add_argument('-mcmc_fixed_step_size', action='store_true')
parser.add_argument('--switch', type=float, default=-1)
parser.add_argument('--hidden_dim', type=int, default=16)
parser.add_argument('--num_layers', type=int, default=1)
parser.add_argument('-use_gpu', action='store_true')
parser.add_argument('--flow', type=str, default='spline')
parser.add_argument('--num_blocks', type=int, default=3)
parser.add_argument('--jitter', type=float, default=-1)
parser.add_argument('--num_slow', type=int, default=0)
parser.add_argument('--log_dir', type=str, default='logs')
parser.add_argument('--likelihood', type=str, default='rosenbrock')
parser.add_argument('--log_suffix', type=str, default='')
parser.add_argument('--base_dist', type=str, default='')
parser.add_argument('--scale', type=str, default='')
parser.add_argument('--beta', type=float, default=8.0)
parser.add_argument('--corr', type=float, default=0.99)
args = parser.parse_args()
main(args)