-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_attack_black.py
105 lines (86 loc) · 3.55 KB
/
test_attack_black.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
## test_attack.py -- sample code to test attack procedure
##
## Copyright (C) 2016, Nicholas Carlini <[email protected]>.
##
## This program is licenced under the BSD 2-Clause licence,
## contained in the LICENCE file in this directory.
import tensorflow as tf
import numpy as np
import time
from setup_cifar import CIFAR, CIFARModel
from setup_mnist import MNIST, MNISTModel
from setup_inception import ImageNet, InceptionModel
from l2_attack import CarliniL2
from l0_attack import CarliniL0
from li_attack import CarliniLi
from l2_attack_black import BlackBoxL2
from PIL import Image
def show(img, name = "output.png"):
"""
Show MNSIT digits in the console.
"""
np.save('img', img)
fig = (img + 0.5)*255
fig = fig.astype(np.uint8).squeeze()
pic = Image.fromarray(fig)
# pic.resize((512,512), resample=PIL.Image.BICUBIC)
pic.save(name)
remap = " .*#"+"#"*100
img = (img.flatten()+.5)*3
if len(img) != 784: return
print("START")
for i in range(28):
print("".join([remap[int(round(x))] for x in img[i*28:i*28+28]]))
def generate_data(data, samples, targeted=True, start=0, inception=False):
"""
Generate the input data to the attack algorithm.
data: the images to attack
samples: number of samples to use
targeted: if true, construct targeted attacks, otherwise untargeted attacks
start: offset into data to use
inception: if targeted and inception, randomly sample 100 targets intead of 1000
"""
inputs = []
targets = []
for i in range(samples):
if targeted:
if inception:
seq = random.sample(range(1,1001), 10)
else:
seq = range(data.test_labels.shape[1])
# print ('image label:', np.argmax(data.test_labels[start+i]))
for j in seq:
# skip the original image label
if (j == np.argmax(data.test_labels[start+i])) and (inception == False):
continue
inputs.append(data.test_data[start+i])
targets.append(np.eye(data.test_labels.shape[1])[j])
else:
inputs.append(data.test_data[start+i])
targets.append(data.test_labels[start+i])
inputs = np.array(inputs)
targets = np.array(targets)
return inputs, targets
if __name__ == "__main__":
with tf.Session() as sess:
use_log = True
# data, model = MNIST(), MNISTModel("models/mnist", sess, use_log)
# data, model = CIFAR(), CIFARModel("models/cifar", sess, use_log)
data, model = ImageNet(), InceptionModel(sess, use_log)
attack = BlackBoxL2(sess, model, batch_size=128, max_iterations=15000, confidence=0, use_log=use_log)
inputs, targets = generate_data(data, samples=1, targeted=True,
start=6, inception=False)
inputs = inputs[1:2]
targets = targets[1:2]
timestart = time.time()
adv = attack.attack(inputs, targets)
timeend = time.time()
print("Took",timeend-timestart,"seconds to run",len(inputs),"samples.")
print("Valid:")
show(inputs[0], "original.png")
print("Adversarial:")
show(adv, "adversarial.png")
show(adv - inputs[0], "diff.png")
print("Valid Classification:", np.argsort(model.model.predict(inputs[0].reshape((1,) + adv.shape)))[-1:-6:-1])
print("Adversarial Classification:", np.argsort(model.model.predict(adv.reshape((1,) + adv.shape)))[-1:-6:-1])
print("Total distortion:", np.sum((adv-inputs[0])**2)**.5)