-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_BSC.py
359 lines (319 loc) · 13.7 KB
/
main_BSC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import numpy as np
import pandas as pd
import os
from utils import *
from sklearn.model_selection import StratifiedKFold, KFold
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.optim import Adam, RMSprop
from transformers import BertTokenizer
from model import Eyettention
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from torch.nn.functional import cross_entropy, softmax
from collections import deque
import pickle
import json
import matplotlib.pyplot as plt
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='run Eyettention on BSC dataset')
parser.add_argument(
'--test_mode',
help='New Sentence Split: text, New Reader Split: subject',
type=str,
default='text'
)
parser.add_argument(
'--atten_type',
help='attention type: global, local, local-g',
type=str,
default='local-g'
)
parser.add_argument(
'--save_data_folder',
help='folder path for saving results',
type=str,
default='./results/BSC/'
)
parser.add_argument(
'--scanpath_gen_flag',
help='whether to generate scanpath',
type=int,
default=1
)
parser.add_argument(
'--max_pred_len',
help='if scanpath_gen_flag is True, you can determine the longest scanpath that you want to generate, which should depend on the sentence length',
type=int,
default=60
)
parser.add_argument(
'--gpu',
help='gpu index',
type=int,
default=7
)
args = parser.parse_args()
gpu = args.gpu
torch.set_default_tensor_type('torch.FloatTensor')
availbl = torch.cuda.is_available()
print(torch.cuda.is_available())
if availbl:
device = f'cuda:{gpu}'
else:
device = 'cpu'
torch.cuda.set_device(gpu)
cf = {"model_pretrained": "bert-base-chinese",
"lr": 1e-3,
"max_grad_norm": 10,
"n_epochs": 1000,
"n_folds": 5,
"dataset": 'BSC',
"atten_type": args.atten_type,
"batch_size": 256,
"max_sn_len": 27, #include start token and end token
"max_sp_len": 40, #include start token and end token
"norm_type": "z-score",
"earlystop_patience": 20,
"max_pred_len":args.max_pred_len
}
#Encode the label into interger categories, setting the exclusive category 'cf["max_sn_len"]-1' as the end sign
le = LabelEncoder()
le.fit(np.append(np.arange(-cf["max_sn_len"]+3, cf["max_sn_len"]-1), cf["max_sn_len"]-1))
#le.classes_
#load corpus
word_info_df, pos_info_df, eyemovement_df = load_corpus(cf["dataset"])
#Make list with sentence index
sn_list = np.unique(eyemovement_df.sn.values).tolist()
#Make list with reader index
reader_list = np.unique(eyemovement_df.id.values).tolist()
#Split training&test sets by text or reader, depending on configuration
if args.test_mode == 'text':
print('Start evaluating on new sentences.')
split_list = sn_list
elif args.test_mode == 'subject':
print('Start evaluating on new readers.')
split_list = reader_list
n_folds = cf["n_folds"]
kf = KFold(n_splits=n_folds, shuffle=True, random_state=0)
fold_indx = 0
#for scanpath generation
sp_dnn_list = []
sp_human_list = []
for train_idx, test_idx in kf.split(split_list):
loss_dict = {'val_loss':[], 'train_loss':[], 'test_ll':[]}
list_train = [split_list[i] for i in train_idx]
list_test = [split_list[i] for i in test_idx]
# create train validation split for training the models:
kf_val = KFold(n_splits=n_folds, shuffle=True, random_state=0)
for train_index, val_index in kf_val.split(list_train):
# we only evaluate a single fold
break
list_train_net = [list_train[i] for i in train_index]
list_val_net = [list_train[i] for i in val_index]
if args.test_mode == 'text':
sn_list_train = list_train_net
sn_list_val = list_val_net
sn_list_test = list_test
reader_list_train, reader_list_val, reader_list_test = reader_list, reader_list, reader_list
elif args.test_mode == 'subject':
reader_list_train = list_train_net
reader_list_val = list_val_net
reader_list_test = list_test
sn_list_train, sn_list_val, sn_list_test = sn_list, sn_list, sn_list
#initialize tokenizer
tokenizer = BertTokenizer.from_pretrained(cf['model_pretrained'])
#Preparing batch data
dataset_train = BSCdataset(word_info_df, eyemovement_df, cf, reader_list_train, sn_list_train, tokenizer)
train_dataloaderr = DataLoader(dataset_train, batch_size = cf["batch_size"], shuffle = True, drop_last=True)
dataset_val = BSCdataset(word_info_df, eyemovement_df, cf, reader_list_val, sn_list_val, tokenizer)
val_dataloaderr = DataLoader(dataset_val, batch_size = cf["batch_size"], shuffle = False, drop_last=True)
dataset_test = BSCdataset(word_info_df, eyemovement_df, cf, reader_list_test, sn_list_test, tokenizer)
test_dataloaderr = DataLoader(dataset_test, batch_size = cf["batch_size"], shuffle = False, drop_last=False)
#z-score normalization for gaze features
fix_dur_mean, fix_dur_std = calculate_mean_std(dataloader=train_dataloaderr, feat_key="sp_fix_dur", padding_value=0, scale=1000)
landing_pos_mean, landing_pos_std = calculate_mean_std(dataloader=train_dataloaderr, feat_key="sp_landing_pos", padding_value=0)
sn_word_len_mean, sn_word_len_std = calculate_mean_std(dataloader=train_dataloaderr, feat_key="sn_word_len")
# load model
dnn = Eyettention(cf)
#training
episode = 0
optimizer = Adam(dnn.parameters(), lr=cf["lr"])
dnn.train()
dnn.to(device)
av_score = deque(maxlen=100)
old_score = 1e10
save_ep_couter = 0
print('Start training')
for episode_i in range(episode, cf["n_epochs"]+1):
dnn.train()
print('episode:', episode_i)
counter = 0
for batchh in train_dataloaderr:
counter += 1
batchh.keys()
sn_input_ids = batchh["sn_input_ids"].to(device)
sn_attention_mask = batchh["sn_attention_mask"].to(device)
sp_input_ids = batchh["sp_input_ids"].to(device)
sp_attention_mask = batchh["sp_attention_mask"].to(device)
sp_pos = batchh["sp_pos"].to(device)
sp_landing_pos = batchh["sp_landing_pos"].to(device)
sp_fix_dur = (batchh["sp_fix_dur"]/1000).to(device)
sn_word_len = batchh["sn_word_len"].to(device)
#normalize gaze features
mask = ~torch.eq(sp_fix_dur, 0)
sp_fix_dur = (sp_fix_dur-fix_dur_mean)/fix_dur_std * mask
sp_fix_dur = torch.nan_to_num(sp_fix_dur)
sp_landing_pos = (sp_landing_pos - landing_pos_mean)/landing_pos_std * mask
sp_landing_pos = torch.nan_to_num(sp_landing_pos)
sn_word_len = (sn_word_len - sn_word_len_mean)/sn_word_len_std
sn_word_len = torch.nan_to_num(sn_word_len)
# zero old gradients
optimizer.zero_grad()
# predict output with DNN
dnn_out, atten_weights = dnn(sn_emd=sn_input_ids,
sn_mask=sn_attention_mask,
sp_emd=sp_input_ids,
sp_pos=sp_pos,
word_ids_sn=None,
word_ids_sp=None,
sp_fix_dur=sp_fix_dur,
sp_landing_pos=sp_landing_pos,
sn_word_len = sn_word_len)#[batch, step, dec_o_dim]
dnn_out = dnn_out.permute(0,2,1) #[batch, dec_o_dim, step]
#prepare label and mask
pad_mask, label = load_label(sp_pos, cf, le, device)
loss = nn.CrossEntropyLoss(reduction="none")
batch_error = torch.mean(torch.masked_select(loss(dnn_out, label), ~pad_mask))
# backpropagate loss
batch_error.backward()
# clip gradients
gradient_clipping(dnn, cf["max_grad_norm"])
#learn
optimizer.step()
av_score.append(batch_error.to('cpu').detach().numpy())
print('counter:',counter)
print('\rSample {}\tAverage Error: {:.10f} '.format(counter, np.mean(av_score)), end=" ")
loss_dict['train_loss'].append(np.mean(av_score))
val_loss = []
dnn.eval()
for batchh in val_dataloaderr:
with torch.no_grad():
sn_input_ids_val = batchh["sn_input_ids"].to(device)
sn_attention_mask_val = batchh["sn_attention_mask"].to(device)
sp_input_ids_val = batchh["sp_input_ids"].to(device)
sp_attention_mask_val = batchh["sp_attention_mask"].to(device)
sp_pos_val = batchh["sp_pos"].to(device)
sp_landing_pos_val = batchh["sp_landing_pos"].to(device)
sp_fix_dur_val = (batchh["sp_fix_dur"]/1000).to(device)
sn_word_len_val = batchh["sn_word_len"].to(device)
#normalize gaze features
mask = ~torch.eq(sp_fix_dur_val, 0)
sp_fix_dur_val = (sp_fix_dur_val-fix_dur_mean)/fix_dur_std * mask
sp_landing_pos_val = (sp_landing_pos_val - landing_pos_mean)/landing_pos_std * mask
sp_fix_dur_val = torch.nan_to_num(sp_fix_dur_val)
sp_landing_pos_val = torch.nan_to_num(sp_landing_pos_val)
sn_word_len_val = (sn_word_len_val - sn_word_len_mean)/sn_word_len_std
sn_word_len_val = torch.nan_to_num(sn_word_len_val)
dnn_out_val, atten_weights_val = dnn(sn_emd=sn_input_ids_val,
sn_mask=sn_attention_mask_val,
sp_emd=sp_input_ids_val,
sp_pos=sp_pos_val,
word_ids_sn=None,
word_ids_sp=None,
sp_fix_dur=sp_fix_dur_val,
sp_landing_pos=sp_landing_pos_val,
sn_word_len = sn_word_len_val)#[batch, step, dec_o_dim]
dnn_out_val = dnn_out_val.permute(0,2,1) #[batch, dec_o_dim, step
#prepare label and mask
loss = nn.CrossEntropyLoss(reduction="none")
pad_mask_val, label_val = load_label(sp_pos_val, cf, le, device)
batch_error_val = torch.mean(torch.masked_select(loss(dnn_out_val, label_val), ~pad_mask_val))
val_loss.append(batch_error_val.detach().to('cpu').numpy())
print('\nvalidation loss is {} \n'.format(np.mean(val_loss)))
loss_dict['val_loss'].append(np.mean(val_loss))
if np.mean(val_loss) < old_score:
# save model if val loss is smallest
torch.save(dnn.state_dict(), '{}/CELoss_BSC_{}_eyettention_{}_newloss_fold{}.pth'.format(args.save_data_folder, args.test_mode, args.atten_type, fold_indx))
old_score= np.mean(val_loss)
print('\nsaved model state dict\n')
save_ep_couter = episode_i
else:
#early stopping
if episode_i - save_ep_couter >= cf["earlystop_patience"]:
break
#evaluation
dnn.eval()
res_llh=[]
dnn.load_state_dict(torch.load(os.path.join(args.save_data_folder, f'CELoss_BSC_{args.test_mode}_eyettention_{args.atten_type}_newloss_fold{fold_indx}.pth'), map_location='cpu'))
dnn.to(device)
batch_indx = 0
for batchh in test_dataloaderr:
with torch.no_grad():
sn_input_ids_test = batchh["sn_input_ids"].to(device)
sn_attention_mask_test = batchh["sn_attention_mask"].to(device)
sp_input_ids_test = batchh["sp_input_ids"].to(device)
sp_attention_mask_test = batchh["sp_attention_mask"].to(device)
sp_pos_test = batchh["sp_pos"].to(device) # 28: '<Sep>', 29: '<'Pad'>'
sp_landing_pos_test = batchh["sp_landing_pos"].to(device)
sp_fix_dur_test = (batchh["sp_fix_dur"]/1000).to(device)
sn_word_len_test = batchh["sn_word_len"].to(device)
#normalize gaze features
mask = ~torch.eq(sp_fix_dur_test, 0)
sp_fix_dur_test = (sp_fix_dur_test-fix_dur_mean)/fix_dur_std * mask
sp_landing_pos_test = (sp_landing_pos_test - landing_pos_mean)/landing_pos_std * mask
sp_fix_dur_test = torch.nan_to_num(sp_fix_dur_test)
sp_landing_pos_test = torch.nan_to_num(sp_landing_pos_test)
sn_word_len_test = (sn_word_len_test - sn_word_len_mean)/sn_word_len_std
sn_word_len_test = torch.nan_to_num(sn_word_len_test)
dnn_out_test, atten_weights_test = dnn(sn_emd=sn_input_ids_test,
sn_mask=sn_attention_mask_test,
sp_emd=sp_input_ids_test,
sp_pos=sp_pos_test,
word_ids_sn=None,
word_ids_sp=None,
sp_fix_dur=sp_fix_dur_test,
sp_landing_pos=sp_landing_pos_test,
sn_word_len = sn_word_len_test)#[batch, step, dec_o_dim]
#We do not use nn.CrossEntropyLoss here to calculate the likelihood because it combines nn.LogSoftmax and nn.NLL,
#while nn.LogSoftmax returns a log value based on e, we want 2 instead
#m = nn.LogSoftmax(dim=2) -- base e, we want base 2
m = nn.Softmax(dim=2)
dnn_out_test = m(dnn_out_test).detach().to('cpu').numpy()
#prepare label and mask
pad_mask_test, label_test = load_label(sp_pos_test, cf, le, 'cpu')
#compute log likelihood for the batch samples
res_batch = eval_log_llh(dnn_out_test, label_test, pad_mask_test)
res_llh.append(np.array(res_batch))
if bool(args.scanpath_gen_flag) == True:
sn_len = (torch.sum(sn_attention_mask_test, axis=1) - 2).detach().to('cpu').numpy()
#compute the scan path generated from the model when the first CLS token is given
sp_dnn = dnn.scanpath_generation(sn_emd=sn_input_ids_test,
sn_mask=sn_attention_mask_test,
word_ids_sn=None,
sn_word_len = sn_word_len_test,
le=le,
max_pred_len=cf['max_pred_len'])
sp_dnn, sp_human = prepare_scanpath(sp_dnn.detach().to('cpu').numpy(), sn_len, sp_pos_test, cf)
sp_dnn_list.extend(sp_dnn)
sp_human_list.extend(sp_human)
batch_indx +=1
res_llh = np.concatenate(res_llh).ravel()
loss_dict['test_ll'].append(res_llh)
loss_dict['fix_dur_mean'] = fix_dur_mean
loss_dict['fix_dur_std'] = fix_dur_std
loss_dict['landing_pos_mean'] = landing_pos_mean
loss_dict['landing_pos_std'] = landing_pos_std
loss_dict['sn_word_len_mean'] = sn_word_len_mean
loss_dict['sn_word_len_std'] = sn_word_len_std
print('\nTest likelihood is {} \n'.format(np.mean(res_llh)))
#save results
with open('{}/res_BSC_{}_eyettention_{}_Fold{}.pickle'.format(args.save_data_folder, args.test_mode, args.atten_type, fold_indx), 'wb') as handle:
pickle.dump(loss_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
fold_indx += 1
if bool(args.scanpath_gen_flag) == True:
#save results
dic = {"sp_dnn": sp_dnn_list, "sp_human": sp_human_list}
with open(os.path.join(args.save_data_folder, f'BSC_scanpath_generation_eyettention_{args.test_mode}_{args.atten_type}.pickle'), 'wb') as handle:
pickle.dump(dic, handle, protocol=pickle.HIGHEST_PROTOCOL)