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Tame strong convexity: O(1/¢) steps

Theorem

Let f: R? — R be differentiable and strongly convex with parameter ;i > 0, let x* be
the unique global minimum of f. With decreasing step size

2

T )

stochastic gradient descent yields

2 & . 282
E[f<T(T+ 1) ;t'xt> —fx )} S Ty
where B? := max]_; E[ ||gt||2].

Almost same result as for subgradient descent, but in expectation.
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Tame strong convexity: O(1/¢) steps Il
Proof.

Take expectations over vanilla analysis, before summing up (with varying stepsize 7;):

e/ (0 —x)] = FBlleil] + 5 (B[Ix — x] ~ Bllxier =[]

“Strong convexity in expectation”:
Blg! (x - x)] = B[V7(x) (x0 = x)] 2 B[f(x0) — ()] + 5Bl — 72
Putting it together (with E[|lg:[*] < B?):

2 1 -1
BliGe) — £ < 204 DB g 2] - T — )

Proof continues as for subgradient descent, this time with expectations.
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Mini-batch SGD

Instead of using a single element f;, use an average of several of them:
1 &
5, J
gt - m ;1 8t -

Extreme cases:
m = 1 < SGD as originally defined
m = n < full gradient descent

Benefit: Gradient computation can be naively parallelized
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Mini-batch SGD

Variance Intuition: Taking an average of many independent random variables reduces
the variance. So for larger size of the mini-batch m, g; will be closer to the true
gradient, in expectation:

[y e ES SR

—— B} - V()]
2
= B[lg! ] - LIVl <

m .

Using a modification of the SGD analysis, can use this quantity to relate convergence
rate to the rate of full gradient descent.
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Stochastic Subgradient Descent

For problems which are not necessarily differentiable, we modify SGD to use a
subgradient of f; in each iteration. The update of stochastic subgradient descent is
given by

sample ¢ € [n] uniformly at random
let g, € Of;(x¢)

Xt+1 = Xt — Vt8t-

In other words, we are using an unbiased estimate of a subgradient at each step,
Elg:|x:] € 0f (x).

Convergence in O(1/¢2), by using the subgradient property at the beginning of the
proof, where convexity was applied.
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Constrained optimization

For constrained optimization, our theorem for the SGD convergence in O(1/£?) steps
directly extends to constrained problems as well.

After every step of SGD, projection back to X is applied as usual. The resulting
algorithm is called projected SGD.
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Chapter 6

Non-convex Optimization
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Gradient Descent in the nonconvex world

» may get stuck in a local minimum and miss the global minimum;
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Gradient Descent in the nonconvex world I
Even if there is a unique local minimum (equal to the global minimum), we

» may get stuck in a saddle point;
> run off to infinity;
» possibly encounter other bad behaviors.

I
|
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Gradient Descent in the nonconvex world 11

Often, we observe good behavior in practice.
Theoretical explanations mostly missing.

This lecture: under favorable conditions, we sometimes can say something useful about
the behavior of gradient descent, even on nonconvex functions.
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Smooth (but not necessarily convex) functions

Recall: A differentiable f: dom(f) — R is smooth with parameter L € R, over a
convex set X C dom(f) if

/

F9) < F6+ 95Ty =)+ 5 Ix—yl% vy € X 1)

/

Definition does not require convexity. )/
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Concave functions
f is called concave if —f is convex.

For all x, the graph of a differentiable concave function is below the tangent
hyperplane at x.

= concave functions are smooth with L = 0. .. but boring from an\optimization point
of view (no global minimum), gradient descent runs off to infinity
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Bounded Hessians = smooth

Lemma

Let f:dom(f) — R be twice differentiable, with X C dom(f) a convex set, and
HV2f(x)H < L for all x € X, where ||| is spectral norm. Then f is smooth with
parameter L over X.

Examples:

» all quadratic functions f(x) =x'Ax+b'x+¢

» f(x) =sin(x) (many global minima)
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Bounded Hessians = smooth |l
Proof.

By Theorem 1.10 (applied to the gradient function V f), bounded Hessians imply
Lipschitz continuity of the gradient,

IVfx) - VIWI<Llx-yl, xyeX

To show that this implies smoothness, we use h(1) fo h'(t)dt with

h(t) == f(x+t(y —x)), tel0,1],

Chain rule:
H(t)=Vf(x+ty—x) (y—x).
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Bounded Hessians = smooth Il
Proof.

For x,y € X:

y) = f(x) = V() " (y = %)
1) — h(0) = V£(x)"(y —x) (definition of h)
1

= /0 W(t)dt — Vf(x)" (y —x)
1
_ /0 Vix+tly —x) (y —x)dt — V()T (y - )
1
_ /0 (Vix+tly —x) (y —x) = VI(x) (y —x))dt

1
- /0 (VF(x+Hy — %)) — V() (y = x)dt
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Bounded Hessians = smooth IV
Proof.

For x,y € X:
fly)— f(x) = Vix) " (y —x)
1
— /O (VF(x+Hy — %)) = VF(x)) (y — x)dt

1
< [ U(Tr6c+ ety = 20) = V100) (3 =
1
< /0 H (Vix+tly —x)) — Vf(x)) || |(y — x)||dt (Cauchy-Schwarz)

1
< / Lty —x)|| ||[(y —x)||dt (Lipschitz continuous gradients (6.1))
0

1
L
2 2
= [ Ll =5
0
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Smooth = bounded Hessians?

Yes, over any open convex set X (Exercise 33).
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Gradient descent on smooth functions
Will prove: |V f(x;)||? — 0 for t — oco. ..

...at the same rate as f(x;) — f(x*) — 0 in the convex case.

f(x¢) — f(x*) itself may not converge to 0 in the nonconvex case:
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What does||V f(x;)||> — 0 mean?

It may or may not mean that we converge to a critical point (Vf(y*) = 0)
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Gradient descent on smooth (not necessarily convex) functions

Theorem

Let f: R — R be differentiable with a global minimum x*; furthermore, suppose that
f is smooth with parameter L according to Definition 2.2. Choosing stepsize

1
V= Z?
gradient descent yields
T—1
1 9 2L N
7 2 IV < 5 () = F6). T >0

(x0)||* < 2k (f(x0) — f(x*)) for some t € {0,...,T —1}.
And also, limy_ ||V f(x:)||* = 0 (Exercise 34).
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Gradient descent on smooth (not necessarily convex) functions II

Proof.

Sufficient decrease (Lemma 2.6), does not require convexity:

Floxen) < Fx0) = 5= IVFGIP, 120

Rewriting:
IV f(xe)lI* < 2L(f (xe) = f(xer1))-

Telescoping sum:

N

IVF(xo)I* < 2L(f(x0) — f(x7)) < 2L(f(x0) — f(x¥)).

t

Il
o

The statement follows (divide by T').
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No overshooting

In the smooth setting, and with stepsize 1/L, gradient descent cannot overshoot, i.e.
pass a critical point (Exercise 35).

2 X' y* % v*x' % x' 2y

x' =x—9Vf(x),y<1/L overshooting may happen with v =1/L
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