forked from HW140701/VideoTo3dPoseAndBvh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerators.py
243 lines (205 loc) · 10.9 KB
/
generators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright (c) 2018-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
from itertools import zip_longest
import numpy as np
class ChunkedGenerator:
"""
Batched data generator, used for training.
The sequences are split into equal-length chunks and padded as necessary.
Arguments:
batch_size -- the batch size to use for training
cameras -- list of cameras, one element for each video (optional, used for semi-supervised training)
poses_3d -- list of ground-truth 3D poses, one element for each video (optional, used for supervised training)
poses_2d -- list of input 2D keypoints, one element for each video
chunk_length -- number of output frames to predict for each training example (usually 1)
pad -- 2D input padding to compensate for valid convolutions, per side (depends on the receptive field)
causal_shift -- asymmetric padding offset when causal convolutions are used (usually 0 or "pad")
shuffle -- randomly shuffle the dataset before each epoch
random_seed -- initial seed to use for the random generator
augment -- augment the dataset by flipping poses horizontally
kps_left and kps_right -- list of left/right 2D keypoints if flipping is enabled
joints_left and joints_right -- list of left/right 3D joints if flipping is enabled
"""
def __init__(self, batch_size, cameras, poses_3d, poses_2d,
chunk_length, pad=0, causal_shift=0,
shuffle=True, random_seed=1234,
augment=False, kps_left=None, kps_right=None, joints_left=None, joints_right=None,
endless=False):
assert poses_3d is None or len(poses_3d) == len(poses_2d), (len(poses_3d), len(poses_2d))
assert cameras is None or len(cameras) == len(poses_2d)
# Build lineage info
pairs = [] # (seq_idx, start_frame, end_frame, flip) tuples
for i in range(len(poses_2d)):
assert poses_3d is None or poses_3d[i].shape[0] == poses_3d[i].shape[0]
n_chunks = (poses_2d[i].shape[0] + chunk_length - 1) // chunk_length
offset = (n_chunks * chunk_length - poses_2d[i].shape[0]) // 2
bounds = np.arange(n_chunks + 1) * chunk_length - offset
augment_vector = np.full(len(bounds - 1), False, dtype=bool)
pairs += zip(np.repeat(i, len(bounds - 1)), bounds[:-1], bounds[1:], augment_vector)
if augment:
pairs += zip(np.repeat(i, len(bounds - 1)), bounds[:-1], bounds[1:], ~augment_vector)
# Initialize buffers
if cameras is not None:
self.batch_cam = np.empty((batch_size, cameras[0].shape[-1]))
if poses_3d is not None:
self.batch_3d = np.empty((batch_size, chunk_length, poses_3d[0].shape[-2], poses_3d[0].shape[-1]))
self.batch_2d = np.empty((batch_size, chunk_length + 2 * pad, poses_2d[0].shape[-2], poses_2d[0].shape[-1]))
self.num_batches = (len(pairs) + batch_size - 1) // batch_size
self.batch_size = batch_size
self.random = np.random.RandomState(random_seed)
self.pairs = pairs
self.shuffle = shuffle
self.pad = pad
self.causal_shift = causal_shift
self.endless = endless
self.state = None
self.cameras = cameras
self.poses_3d = poses_3d
self.poses_2d = poses_2d
self.augment = augment
self.kps_left = kps_left
self.kps_right = kps_right
self.joints_left = joints_left
self.joints_right = joints_right
def num_frames(self):
return self.num_batches * self.batch_size
def random_state(self):
return self.random
def set_random_state(self, random):
self.random = random
def augment_enabled(self):
return self.augment
def next_pairs(self):
if self.state is None:
if self.shuffle:
pairs = self.random.permutation(self.pairs)
else:
pairs = self.pairs
return 0, pairs
else:
return self.state
def next_epoch(self):
enabled = True
while enabled:
start_idx, pairs = self.next_pairs()
for b_i in range(start_idx, self.num_batches):
chunks = pairs[b_i * self.batch_size: (b_i + 1) * self.batch_size]
for i, (seq_i, start_3d, end_3d, flip) in enumerate(chunks):
start_2d = start_3d - self.pad - self.causal_shift
end_2d = end_3d + self.pad - self.causal_shift
# 2D poses
seq_2d = self.poses_2d[seq_i]
low_2d = max(start_2d, 0)
high_2d = min(end_2d, seq_2d.shape[0])
pad_left_2d = low_2d - start_2d
pad_right_2d = end_2d - high_2d
if pad_left_2d != 0 or pad_right_2d != 0:
self.batch_2d[i] = np.pad(seq_2d[low_2d:high_2d], ((pad_left_2d, pad_right_2d), (0, 0), (0, 0)), 'edge')
else:
self.batch_2d[i] = seq_2d[low_2d:high_2d]
if flip:
# Flip 2D keypoints
self.batch_2d[i, :, :, 0] *= -1
self.batch_2d[i, :, self.kps_left + self.kps_right] = self.batch_2d[i, :, self.kps_right + self.kps_left]
# 3D poses
if self.poses_3d is not None:
seq_3d = self.poses_3d[seq_i]
low_3d = max(start_3d, 0)
high_3d = min(end_3d, seq_3d.shape[0])
pad_left_3d = low_3d - start_3d
pad_right_3d = end_3d - high_3d
if pad_left_3d != 0 or pad_right_3d != 0:
self.batch_3d[i] = np.pad(seq_3d[low_3d:high_3d], ((pad_left_3d, pad_right_3d), (0, 0), (0, 0)), 'edge')
else:
self.batch_3d[i] = seq_3d[low_3d:high_3d]
if flip:
# Flip 3D joints
self.batch_3d[i, :, :, 0] *= -1
self.batch_3d[i, :, self.joints_left + self.joints_right] = \
self.batch_3d[i, :, self.joints_right + self.joints_left]
# Cameras
if self.cameras is not None:
self.batch_cam[i] = self.cameras[seq_i]
if flip:
# Flip horizontal distortion coefficients
self.batch_cam[i, 2] *= -1
self.batch_cam[i, 7] *= -1
if self.endless:
self.state = (b_i + 1, pairs)
if self.poses_3d is None and self.cameras is None:
yield None, None, self.batch_2d[:len(chunks)]
elif self.poses_3d is not None and self.cameras is None:
yield None, self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)]
elif self.poses_3d is None:
yield self.batch_cam[:len(chunks)], None, self.batch_2d[:len(chunks)]
else:
yield self.batch_cam[:len(chunks)], self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)]
if self.endless:
self.state = None
else:
enabled = False
class UnchunkedGenerator:
"""
Non-batched data generator, used for testing.
Sequences are returned one at a time (i.e. batch size = 1), without chunking.
If data augmentation is enabled, the batches contain two sequences (i.e. batch size = 2),
the second of which is a mirrored version of the first.
Arguments:
cameras -- list of cameras, one element for each video (optional, used for semi-supervised training)
poses_3d -- list of ground-truth 3D poses, one element for each video (optional, used for supervised training)
poses_2d -- list of input 2D keypoints, one element for each video
pad -- 2D input padding to compensate for valid convolutions, per side (depends on the receptive field)
causal_shift -- asymmetric padding offset when causal convolutions are used (usually 0 or "pad")
augment -- augment the dataset by flipping poses horizontally
kps_left and kps_right -- list of left/right 2D keypoints if flipping is enabled
joints_left and joints_right -- list of left/right 3D joints if flipping is enabled
"""
def __init__(self, cameras, poses_3d, poses_2d, pad=0, causal_shift=0,
augment=False, kps_left=None, kps_right=None, joints_left=None, joints_right=None):
assert poses_3d is None or len(poses_3d) == len(poses_2d)
assert cameras is None or len(cameras) == len(poses_2d)
self.augment = augment
self.kps_left = kps_left
self.kps_right = kps_right
self.joints_left = joints_left
self.joints_right = joints_right
self.pad = pad
self.causal_shift = causal_shift
self.cameras = [] if cameras is None else cameras
self.poses_3d = [] if poses_3d is None else poses_3d
self.poses_2d = poses_2d
def num_frames(self):
count = 0
for p in self.poses_2d:
count += p.shape[0]
return count
def augment_enabled(self):
return self.augment
def set_augment(self, augment):
self.augment = augment
def next_epoch(self):
for seq_cam, seq_3d, seq_2d in zip_longest(self.cameras, self.poses_3d, self.poses_2d):
batch_cam = None if seq_cam is None else np.expand_dims(seq_cam, axis=0)
batch_3d = None if seq_3d is None else np.expand_dims(seq_3d, axis=0)
# 2D input padding to compensate for valid convolutions, per side (depends on the receptive field)
batch_2d = np.expand_dims(np.pad(seq_2d,
((self.pad + self.causal_shift, self.pad - self.causal_shift), (0, 0), (0, 0)),
'edge'), axis=0)
if self.augment:
# Append flipped version
if batch_cam is not None:
batch_cam = np.concatenate((batch_cam, batch_cam), axis=0)
batch_cam[1, 2] *= -1
batch_cam[1, 7] *= -1
if batch_3d is not None:
batch_3d = np.concatenate((batch_3d, batch_3d), axis=0)
batch_3d[1, :, :, 0] *= -1
batch_3d[1, :, self.joints_left + self.joints_right] = batch_3d[1, :, self.joints_right + self.joints_left]
batch_2d = np.concatenate((batch_2d, batch_2d), axis=0)
batch_2d[1, :, :, 0] *= -1
batch_2d[1, :, self.kps_left + self.kps_right] = batch_2d[1, :, self.kps_right + self.kps_left]
yield batch_cam, batch_3d, batch_2d