-
Gil Bellosta: R para profesionales de los datos: una introducción
-
Hyndman & Athanasopoulos: Forecasting: Principles and Practice
-
Doguku & Çetinkaya-Rundel: Web Scraping in the Statistics and Data Science Curriculum: Challenges and Opportunities - en PDF
-
Khalil & Fakir: RCrawler: An R package for parallel web crawling and scraping - en PDF
-
Krotov & Tennyson: Web Scraping in the R Language: A Tutorial - en PDF
-
Munzert: Automated Data Collection with R: a practical guide to web scraping and text mining - en PDF
-
Albrieu & Palazzo: Categorización de conflictos sociales en el ámbito de los recursos naturales: un estudio de las actividades extractivas mediante la minería de textos - en PDF
-
Franzosi: What’s in a text? Bridging the gap between quality and quantity in the digital era - en PDF
-
Ghai: Finding the needle in the haystack: Fine-tuning transformers to classify protest events in a sea ofnews articles, with Bayesian uncertainty measures era - en PDF
-
Nardulli et.al: Graphing the grammar of motives in National Security Strategies: Cultural interpretation, automated text analysis and the drama of global politics - en PDF
-
Mhor et.al: A Progressive Supervised-learning Approach to Generating Rich Civil Strife Data - en PDF
-
Olsson et.al: Text Categorization for Conflict Event Annotation - en PDF
-
Palazzo: Midiendo los costos sociales de la abundancia en Recursos Naturales: Una nueva herramienta estadística - en PDF
-
Steinert-Threlkeld & Joo: Protest Event Data from Geolocated Social Media Content - en PDF