forked from NanoComp/libctl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimplex.scm
146 lines (130 loc) · 5.01 KB
/
simplex.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
; libctl: flexible Guile-based control files for scientific software
; Copyright (C) 1998-2014 Massachusetts Institute of Technology and Steven G. Johnson
;
; This library is free software; you can redistribute it and/or
; modify it under the terms of the GNU Lesser General Public
; License as published by the Free Software Foundation; either
; version 2 of the License, or (at your option) any later version.
;
; This library is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
; Lesser General Public License for more details.
;
; You should have received a copy of the GNU Lesser General Public
; License along with this library; if not, write to the
; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
; Boston, MA 02111-1307, USA.
;
; Steven G. Johnson can be contacted at [email protected].
; ****************************************************************
; The Nelder-Mead simplex algorithm for multidimensional minimization.
; See the simplex-minimize function, below.
(define (ax+by a x b y)
(define (cdr-null x) (if (null? x) '() (cdr x)))
(if (and (null? x) (null? y))
'()
(let ((ax (if (null? x) 0 (* a (car x))))
(by (if (null? y) 0 (* b (car y)))))
(cons (+ ax by) (ax+by a (cdr-null x) b (cdr-null y))))))
(define (simplex-point x val) (cons x val))
(define simplex-point-x car)
(define simplex-point-val cdr)
(define (simplex-high s)
(car (sort s (lambda (s1 s2) (> (simplex-point-val s1)
(simplex-point-val s2))))))
(define (simplex-high2 s)
(cadr (sort s (lambda (s1 s2) (> (simplex-point-val s1)
(simplex-point-val s2))))))
(define (simplex-low s)
(car (sort s (lambda (s1 s2) (< (simplex-point-val s1)
(simplex-point-val s2))))))
(define (simplex-replace s s-old s-new)
(if (null? s)
'()
(if (eq? (car s) s-old)
(cons s-new (cdr s))
(cons (car s) (simplex-replace (cdr s) s-old s-new)))))
(define (simplex-sum-x s)
(if (null? s)
'()
(ax+by 1 (simplex-point-x (car s)) 1 (simplex-sum-x (cdr s)))))
(define (simplex-centroid-x s)
(let ((sum (ax+by 1 (simplex-sum-x s)
-1 (simplex-point-x (simplex-high s)))))
(ax+by (/ (- (length s) 1)) sum 0.0 '())))
(define (simplex-shrink s-min f s)
(if (null? s)
'()
(if (eq? s-min (car s))
(cons (car s) (simplex-shrink s-min f (cdr s)))
(let ((x (ax+by 0.5 (simplex-point-x s-min)
0.5 (simplex-point-x (car s)))))
(cons (simplex-point x (apply f x))
(simplex-shrink s-min f (cdr s)))))))
(define simplex-reflect-ratio 1.0)
(define simplex-expand-ratio 2.0)
(define simplex-contract-ratio 0.5)
(define (simplex-contract f s)
(let ((s-h (simplex-high s))
(s-l (simplex-low s))
(x0 (simplex-centroid-x s)))
(let ((xc (ax+by (- 1 simplex-contract-ratio) x0
simplex-contract-ratio (simplex-point-x s-h))))
(let ((vc (apply f xc)))
(if (< vc (simplex-point-val s-h))
(simplex-replace s s-h (simplex-point xc vc))
(simplex-shrink s-l f s))))))
(define (simplex-iter f s)
(let ((s-h (simplex-high s))
(s-h2 (simplex-high2 s))
(s-l (simplex-low s))
(x0 (simplex-centroid-x s)))
(let ((xr (ax+by (+ 1 simplex-reflect-ratio) x0
(- simplex-reflect-ratio) (simplex-point-x s-h))))
(let ((vr (apply f xr)))
(if (and (<= vr (simplex-point-val s-h2))
(>= vr (simplex-point-val s-l)))
(simplex-replace s s-h (simplex-point xr vr))
(if (< vr (simplex-point-val s-l))
(let ((xe (ax+by (- 1 simplex-expand-ratio) x0
simplex-expand-ratio xr)))
(let ((ve (apply f xe)))
(if (>= ve vr)
(simplex-replace s s-h (simplex-point xr vr))
(simplex-replace s s-h (simplex-point xe ve)))))
(if (and (< vr (simplex-point-val s-h))
(> vr (simplex-point-val s-h2)))
(simplex-contract f (simplex-replace
s s-h (simplex-point xr vr)))
(simplex-contract f s))))))))
(define (simplex-iterate f s tol)
(let ((s-h (simplex-high s))
(s-l (simplex-low s)))
(if (<= (magnitude (- (simplex-point-val s-h) (simplex-point-val s-l)))
(* 0.5 tol (+ tol (magnitude (simplex-point-val s-h))
(magnitude (simplex-point-val s-l)))))
s-l
(begin
(print "extremization: best so far is " s-l "\n")
(simplex-iterate f (simplex-iter f s) tol)))))
(define (simplex-shift-x x i)
(let ((xv (list->vector x)))
(let ((xv-i (vector-ref xv i)))
(if (< (magnitude xv-i) 1e-6)
(vector-set! xv i 0.1)
(vector-set! xv i (* 0.9 xv-i)))
(vector->list xv))))
(define (simplex-shift-list x)
(define (ssl-aux i)
(if (< i 0)
'()
(cons (simplex-shift-x x i) (ssl-aux (- i 1)))))
(cons x (ssl-aux (- (length x) 1))))
; Use the Simplex method to minimize the function (f . x), where
; the initial guess is x0 and the fractional tolerance on the value
; of the solution is tol.
(define (simplex-minimize f x0 tol)
(let ((s0 (map (lambda (x) (simplex-point x (apply f x)))
(simplex-shift-list x0))))
(simplex-iterate f s0 tol)))