Skip to content

Latest commit

 

History

History

robust_coloring

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We use the following packages

torch                  1.11.0
geneticalgorithm       1.0.2

First, install the required packages

pip install torch==1.11.0+${CUDA} --extra-index-url https://download.pytorch.org/whl/${CUDA}
pip install geneticalgorithm

We have the following methods

  • Baseline methods : greedy-RD / greedy-GA / DC / gurobi
  • Ours (UCom2) : ucom2 / ucom2-cpu

Below are the datasets for the robust coloring problem:

  • Datasets : collins / gavin / krogan / ppi

Below are the commands for running the baseline methods

python greedy-RD.py --ds [dataset] --c [number_of_colors]
python greedy-GA.py --ds [dataset] --c [number_of_colors]
python DC.py --ds [dataset] --c [number_of_colors]
python gurobi.py --graph_name [dataset] --num_colors [number_of_colors] --timeout_sec 300 --num_seeds 5

Below are the commands for running the proposed method

python ucom2.py --ds [dataset] --c [number_of_colors] --npam [number_of_initial_parameters]
python ucom2-cpu.py --ds [dataset] --c [number_of_colors] --npam [number_of_initial_parameters]

Note: With a larger number of initial parameters, you use more time and memory for better optimization performance