forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
BENCH threading scalabikity of HGBRT (scikit-learn#18382)
- Loading branch information
Showing
1 changed file
with
316 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,316 @@ | ||
from time import time | ||
import argparse | ||
import os | ||
from pprint import pprint | ||
|
||
import numpy as np | ||
from threadpoolctl import threadpool_limits | ||
import sklearn | ||
from sklearn.model_selection import train_test_split | ||
# To use this experimental feature, we need to explicitly ask for it: | ||
from sklearn.experimental import enable_hist_gradient_boosting # noqa | ||
from sklearn.ensemble import HistGradientBoostingRegressor | ||
from sklearn.ensemble import HistGradientBoostingClassifier | ||
from sklearn.datasets import make_classification | ||
from sklearn.datasets import make_regression | ||
from sklearn.ensemble._hist_gradient_boosting.utils import ( | ||
get_equivalent_estimator) | ||
|
||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--n-leaf-nodes', type=int, default=31) | ||
parser.add_argument('--n-trees', type=int, default=10) | ||
parser.add_argument('--lightgbm', action="store_true", default=False, | ||
help='also benchmark lightgbm') | ||
parser.add_argument('--xgboost', action="store_true", default=False, | ||
help='also benchmark xgboost') | ||
parser.add_argument('--catboost', action="store_true", default=False, | ||
help='also benchmark catboost') | ||
parser.add_argument('--learning-rate', type=float, default=.1) | ||
parser.add_argument('--problem', type=str, default='classification', | ||
choices=['classification', 'regression']) | ||
parser.add_argument('--loss', type=str, default='default') | ||
parser.add_argument('--missing-fraction', type=float, default=0) | ||
parser.add_argument('--n-classes', type=int, default=2) | ||
parser.add_argument('--n-samples', type=int, default=int(1e6)) | ||
parser.add_argument('--n-features', type=int, default=100) | ||
parser.add_argument('--max-bins', type=int, default=255) | ||
|
||
parser.add_argument('--print-params', action="store_true", default=False) | ||
parser.add_argument('--random-sample-weights', action="store_true", | ||
default=False, | ||
help="generate and use random sample weights") | ||
parser.add_argument('--plot', action="store_true", default=False, | ||
help='show a plot results') | ||
parser.add_argument('--plot-filename', default=None, | ||
help='filename to save the figure to disk') | ||
args = parser.parse_args() | ||
|
||
n_samples = args.n_samples | ||
n_leaf_nodes = args.n_leaf_nodes | ||
n_trees = args.n_trees | ||
lr = args.learning_rate | ||
max_bins = args.max_bins | ||
|
||
|
||
print("Data size: %d samples train, %d samples test." | ||
% (n_samples, n_samples)) | ||
print(f"n_features: {args.n_features}") | ||
|
||
|
||
def get_estimator_and_data(): | ||
if args.problem == 'classification': | ||
X, y = make_classification(args.n_samples * 2, | ||
n_features=args.n_features, | ||
n_classes=args.n_classes, | ||
n_clusters_per_class=1, | ||
n_informative=args.n_features // 2, | ||
random_state=0) | ||
return X, y, HistGradientBoostingClassifier | ||
elif args.problem == 'regression': | ||
X, y = make_regression(args.n_samples_max * 2, | ||
n_features=args.n_features, random_state=0) | ||
return X, y, HistGradientBoostingRegressor | ||
|
||
|
||
X, y, Estimator = get_estimator_and_data() | ||
if args.missing_fraction: | ||
mask = np.random.binomial(1, args.missing_fraction, size=X.shape).astype( | ||
bool) | ||
X[mask] = np.nan | ||
|
||
if args.random_sample_weights: | ||
sample_weight = np.random.rand(len(X)) * 10 | ||
else: | ||
sample_weight = None | ||
|
||
if sample_weight is not None: | ||
(X_train_, X_test_, y_train_, y_test_, | ||
sample_weight_train_, _) = train_test_split( | ||
X, y, sample_weight, test_size=0.5, random_state=0) | ||
else: | ||
X_train_, X_test_, y_train_, y_test_ = train_test_split( | ||
X, y, test_size=0.5, random_state=0) | ||
sample_weight_train_ = None | ||
|
||
|
||
sklearn_est = Estimator( | ||
learning_rate=lr, | ||
max_iter=n_trees, | ||
max_bins=max_bins, | ||
max_leaf_nodes=n_leaf_nodes, | ||
early_stopping=False, | ||
random_state=0, | ||
verbose=0, | ||
) | ||
loss = args.loss | ||
if args.problem == 'classification': | ||
if loss == 'default': | ||
# loss='auto' does not work with get_equivalent_estimator() | ||
loss = 'binary_crossentropy' if args.n_classes == 2 else \ | ||
'categorical_crossentropy' | ||
else: | ||
# regression | ||
if loss == 'default': | ||
loss = 'least_squares' | ||
sklearn_est.set_params(loss=loss) | ||
|
||
|
||
if args.print_params: | ||
print("scikit-learn") | ||
pprint(sklearn_est.get_params()) | ||
|
||
for libname in ["lightgbm", "xgboost", "catboost"]: | ||
if getattr(args, libname): | ||
print(libname) | ||
est = get_equivalent_estimator(sklearn_est, lib=libname) | ||
pprint(est.get_params()) | ||
|
||
|
||
def one_run(n_threads, n_samples): | ||
X_train = X_train_[:n_samples] | ||
X_test = X_test_[:n_samples] | ||
y_train = y_train_[:n_samples] | ||
y_test = y_test_[:n_samples] | ||
if sample_weight is not None: | ||
sample_weight_train = sample_weight_train_[:n_samples] | ||
else: | ||
sample_weight_train = None | ||
assert X_train.shape[0] == n_samples | ||
assert X_test.shape[0] == n_samples | ||
print("Fitting a sklearn model...") | ||
tic = time() | ||
est = sklearn.base.clone(sklearn_est) | ||
|
||
with threadpool_limits(n_threads, user_api="openmp"): | ||
est.fit(X_train, y_train, sample_weight=sample_weight_train) | ||
sklearn_fit_duration = time() - tic | ||
tic = time() | ||
sklearn_score = est.score(X_test, y_test) | ||
sklearn_score_duration = time() - tic | ||
print("score: {:.4f}".format(sklearn_score)) | ||
print("fit duration: {:.3f}s,".format(sklearn_fit_duration)) | ||
print("score duration: {:.3f}s,".format(sklearn_score_duration)) | ||
|
||
lightgbm_score = None | ||
lightgbm_fit_duration = None | ||
lightgbm_score_duration = None | ||
if args.lightgbm: | ||
print("Fitting a LightGBM model...") | ||
lightgbm_est = get_equivalent_estimator(est, lib='lightgbm') | ||
lightgbm_est.set_params(num_threads=n_threads) | ||
|
||
tic = time() | ||
lightgbm_est.fit(X_train, y_train, sample_weight=sample_weight_train) | ||
lightgbm_fit_duration = time() - tic | ||
tic = time() | ||
lightgbm_score = lightgbm_est.score(X_test, y_test) | ||
lightgbm_score_duration = time() - tic | ||
print("score: {:.4f}".format(lightgbm_score)) | ||
print("fit duration: {:.3f}s,".format(lightgbm_fit_duration)) | ||
print("score duration: {:.3f}s,".format(lightgbm_score_duration)) | ||
|
||
xgb_score = None | ||
xgb_fit_duration = None | ||
xgb_score_duration = None | ||
if args.xgboost: | ||
print("Fitting an XGBoost model...") | ||
xgb_est = get_equivalent_estimator(est, lib='xgboost') | ||
xgb_est.set_params(nthread=n_threads) | ||
|
||
tic = time() | ||
xgb_est.fit(X_train, y_train, sample_weight=sample_weight_train) | ||
xgb_fit_duration = time() - tic | ||
tic = time() | ||
xgb_score = xgb_est.score(X_test, y_test) | ||
xgb_score_duration = time() - tic | ||
print("score: {:.4f}".format(xgb_score)) | ||
print("fit duration: {:.3f}s,".format(xgb_fit_duration)) | ||
print("score duration: {:.3f}s,".format(xgb_score_duration)) | ||
|
||
cat_score = None | ||
cat_fit_duration = None | ||
cat_score_duration = None | ||
if args.catboost: | ||
print("Fitting a CatBoost model...") | ||
cat_est = get_equivalent_estimator(est, lib='catboost') | ||
cat_est.set_params(thread_count=n_threads) | ||
|
||
tic = time() | ||
cat_est.fit(X_train, y_train, sample_weight=sample_weight_train) | ||
cat_fit_duration = time() - tic | ||
tic = time() | ||
cat_score = cat_est.score(X_test, y_test) | ||
cat_score_duration = time() - tic | ||
print("score: {:.4f}".format(cat_score)) | ||
print("fit duration: {:.3f}s,".format(cat_fit_duration)) | ||
print("score duration: {:.3f}s,".format(cat_score_duration)) | ||
|
||
return (sklearn_score, sklearn_fit_duration, sklearn_score_duration, | ||
lightgbm_score, lightgbm_fit_duration, lightgbm_score_duration, | ||
xgb_score, xgb_fit_duration, xgb_score_duration, | ||
cat_score, cat_fit_duration, cat_score_duration) | ||
|
||
|
||
max_threads = os.cpu_count() | ||
n_threads_list = [2 ** i for i in range(8) if (2 ** i) < max_threads] | ||
n_threads_list.append(max_threads) | ||
|
||
sklearn_scores = [] | ||
sklearn_fit_durations = [] | ||
sklearn_score_durations = [] | ||
lightgbm_scores = [] | ||
lightgbm_fit_durations = [] | ||
lightgbm_score_durations = [] | ||
xgb_scores = [] | ||
xgb_fit_durations = [] | ||
xgb_score_durations = [] | ||
cat_scores = [] | ||
cat_fit_durations = [] | ||
cat_score_durations = [] | ||
|
||
for n_threads in n_threads_list: | ||
print(f"n_threads: {n_threads}") | ||
( | ||
sklearn_score, | ||
sklearn_fit_duration, | ||
sklearn_score_duration, | ||
lightgbm_score, | ||
lightgbm_fit_duration, | ||
lightgbm_score_duration, | ||
xgb_score, | ||
xgb_fit_duration, | ||
xgb_score_duration, | ||
cat_score, | ||
cat_fit_duration, | ||
cat_score_duration | ||
) = one_run(n_threads, n_samples) | ||
|
||
for scores, score in ( | ||
(sklearn_scores, sklearn_score), | ||
(sklearn_fit_durations, sklearn_fit_duration), | ||
(sklearn_score_durations, sklearn_score_duration), | ||
(lightgbm_scores, lightgbm_score), | ||
(lightgbm_fit_durations, lightgbm_fit_duration), | ||
(lightgbm_score_durations, lightgbm_score_duration), | ||
(xgb_scores, xgb_score), | ||
(xgb_fit_durations, xgb_fit_duration), | ||
(xgb_score_durations, xgb_score_duration), | ||
(cat_scores, cat_score), | ||
(cat_fit_durations, cat_fit_duration), | ||
(cat_score_durations, cat_score_duration)): | ||
scores.append(score) | ||
|
||
|
||
if args.plot or args.plot_filename: | ||
import matplotlib.pyplot as plt | ||
import matplotlib | ||
|
||
fig, axs = plt.subplots(2, figsize=(12, 12)) | ||
|
||
label = f"sklearn {sklearn.__version__}" | ||
axs[0].plot(n_threads_list, sklearn_fit_durations, label=label) | ||
axs[1].plot(n_threads_list, sklearn_score_durations, label=label) | ||
|
||
if args.lightgbm: | ||
import lightgbm | ||
label = f'LightGBM {lightgbm.__version__}' | ||
axs[0].plot(n_threads_list, lightgbm_fit_durations, label=label) | ||
axs[1].plot(n_threads_list, lightgbm_score_durations, label=label) | ||
|
||
if args.xgboost: | ||
import xgboost | ||
label = f'XGBoost {xgboost.__version__}' | ||
axs[0].plot(n_threads_list, xgb_fit_durations, label=label) | ||
axs[1].plot(n_threads_list, xgb_score_durations, label=label) | ||
|
||
if args.catboost: | ||
import catboost | ||
label = f'CatBoost {catboost.__version__}' | ||
axs[0].plot(n_threads_list, cat_fit_durations, label=label) | ||
axs[1].plot(n_threads_list, cat_score_durations, label=label) | ||
|
||
for ax in axs: | ||
ax.set_xscale('log') | ||
ax.set_xlabel('n_threads') | ||
ax.set_ylabel('duration (s)') | ||
ax.set_ylim(0, None) | ||
ax.set_xticks(n_threads_list) | ||
ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) | ||
ax.legend(loc='best') | ||
|
||
axs[0].set_title('fit duration (s)') | ||
axs[1].set_title('score duration (s)') | ||
|
||
title = args.problem | ||
if args.problem == 'classification': | ||
title += ' n_classes = {}'.format(args.n_classes) | ||
fig.suptitle(title) | ||
|
||
plt.tight_layout() | ||
|
||
if args.plot_filename: | ||
plt.savefig(args.plot_filename) | ||
|
||
if args.plot: | ||
plt.show() |