-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
345 lines (300 loc) · 13.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import torch
import argparse
from torch import optim
from dataset import MetricLearningDataset
import numpy as np
import models, utils
from torch.utils.data import DataLoader
from config import Config
from augmentation import transform_train, transform_test
from models import build_dual_model
from utils import AverageMeter, entropy
from utils import eval_recall, eval_nmi, eval_recall_numpy
from logger import get_logger
import logging
import sys
import os
from torch.nn import functional
import time
from torchvision import transforms
parser = argparse.ArgumentParser(description='PyTorch: train CBSwR')
parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
parser.add_argument('--t', default=0.1, type=float,
metavar='T', help='temperature parameter for softmax')
parser.add_argument('--batch_m', default=1, type=int,
metavar='N', help='m for negative sum')
parser.add_argument('--test_batch', default=100, type=int,
help='training batch size')
parser.add_argument('--batch_size', default=64, type=int,
metavar='B', help='training batch size')
parser.add_argument('--low_dim', default=128, type=int,
metavar='D', help='feature dimension')
parser.add_argument('--mu', type=float, help='trade-off parameter for entropy minimization and entropy maximization',
default=1)
parser.add_argument('--alpha', type=float, help='weight of second term in batch loss', default=1.0)
parser.add_argument('--rim', type=float, help='weight of RIM loss', default=0.3)
parser.add_argument('--recon', type=float, help='weight of Recon loss', default=0.001)
parser.add_argument('--norm', type=float, help='weight of norm loss', default=0.001)
parser.add_argument('--cl', type=float, help='weight of center loss', default=0.001)
parser.add_argument('--ml', type=float, help='weight of metric learning loss', default=0.9)
parser.add_argument('--n_epoch', type=int, help='number of epoch', default=30)
parser.add_argument('--interval', type=int, help='number of saved epoch', default=5)
parser.add_argument('--n_cluster', type=int, help='number of cluster', default=100)
parser.add_argument('--log_dir', default='log/', type=str,
help='log save path')
parser.add_argument('--model_name', default='CBSwR_CUB200', type=str,
help='log save path')
parser.add_argument('--checkpoint_dir', default='new_checkpoint/', type=str,
help='model save path')
parser.add_argument('--resume', type=str, default=None, help='Checkpoint location')
parser.add_argument('--config', type=str, default=None, help='Config location')
parser.add_argument('--seed', type=int, help='random seed', default=1024)
parser.add_argument('--neg_m', type=int, help='criterion', default=1)
parser.add_argument('--dataset', default='cub200', type=str,
help='dataset name')
# -----------------
# Helper function
# -----------------
def compute_knn(dist_feat, targets, knn=5):
'''
compute the knn according to instance id/ class id
'''
ndata = len(targets)
nnIndex = np.arange(ndata)
# compute the instance knn
for i in range(ndata):
dist_feat[i, i] = -1000
dist_tmp = dist_feat[i, :]
ind = np.argpartition(dist_tmp, -knn)[-knn:]
# random 1nn and augmented sample for positive
nnIndex[i] = np.random.choice([ind[0], i])
return nnIndex.astype(np.int32)
def extract_features(model, dataset):
n_data = len(dataset)
feat_dim = cfg.low_dim
data_loader = torch.utils.data.DataLoader(dataset, batch_size=cfg.test_batch, shuffle=False, num_workers=4)
model.eval()
model.mode = 'pool'
# Extract features
features = torch.zeros(n_data, feat_dim)
targets = dataset.targets
ptr = 0
with torch.no_grad():
for batch_idx, (inputs, _, _) in enumerate(data_loader):
batch_size = inputs.size(0)
real_size = min(batch_size, args.test_batch)
inputs = inputs.to(cfg.device)
repr, _, _ = model(inputs)
features[ptr:ptr + real_size, :] = repr.cpu()
ptr += cfg.test_batch
model.mode = 'normal'
model.train()
return features, targets
def get_nearest_idex(model, dataset):
n_data = len(dataset)
feat_dim = 1024
data_loader = torch.utils.data.DataLoader(dataset, batch_size=cfg.test_batch, shuffle=False, num_workers=4)
model.eval()
model.mode = 'pool'
dataset.transform = transform_test
# Extract features
print('Extracting features ...')
features = torch.zeros(n_data, feat_dim)
targets = torch.zeros(n_data)
ptr = 0
with torch.no_grad():
for batch_idx, (inputs, _, _) in enumerate(data_loader):
batch_size = inputs.size(0)
real_size = min(batch_size, args.test_batch)
inputs = inputs.to(cfg.device)
_, emb, _ = model(inputs)
features[ptr:ptr + real_size, :] = emb.cpu()
ptr += cfg.test_batch
model.mode = 'normal'
model.train()
dataset.transform = transform_train
# select nn Index
dist_feat = np.array(torch.mm(features, features.t()))
nn_index = compute_knn(dist_feat, targets, knn=1)
return nn_index
def create_mask(pred_cluster):
unique_cluster = torch.unique(pred_cluster)
n = len(pred_cluster)
m = len(unique_cluster)
mask = torch.ones(n, m)
exp_cluster = unique_cluster.expand(n, m)
mask[exp_cluster == pred_cluster.view(n, 1)] = 0
return mask
def rim_criterion(inp):
p = torch.softmax(inp, dim=1)
p_ave = torch.sum(p, dim=0) / inp.size(0)
avg_entropy = entropy(p)
entropy_avg = entropy(p_ave)
return avg_entropy + (1 - cfg.mu * entropy_avg)
def center_batch_criterion(x, centers, targets):
batch_size = x.size(0)
reordered_x = torch.cat((x.narrow(0, batch_size // 2, batch_size // 2),
x.narrow(0, 0, batch_size // 2)), 0)
pos = (x * reordered_x.data).sum(1).div_(cfg.t).exp_()
same_cluster_mask = create_mask(targets).to(cfg.device)
all_prob = torch.mm(x, centers.t().data).div_(cfg.t).exp_()
if cfg.neg_m == 1:
all_div = all_prob.sum(1)
all_div_pos = (all_prob * same_cluster_mask).sum(1)
else:
all_div = (all_prob.sum(1) - pos) * cfg.neg_m + pos
lnPmt = torch.div(pos, all_div_pos)
# negative probability
Pon_div = all_div.repeat(centers.size(0), 1)
lnPon = torch.div(all_prob, Pon_div.t())
lnPon = -lnPon.add(-1)
# prob of image and its centroid
_lnPon = lnPon[same_cluster_mask == 0]
# equation 7 in ref. A (NCE paper)
lnPon.log_()
# also remove the pos term
lnPon = lnPon.sum(1) - _lnPon.log_()
lnPmt.log_()
lnPmtsum = lnPmt.sum(0)
lnPonsum = lnPon.sum(0)
# negative multiply m
lnPonsum = lnPonsum * cfg.neg_m
loss = - (lnPmtsum + cfg.alpha * lnPonsum) / batch_size
return loss
def recon_criterion(target, gt):
return functional.mse_loss(target, gt)
if __name__ == "__main__":
# ----------------------
# Setting up
# ----------------------
cfg = Config()
args = parser.parse_args()
if args.config:
cfg.load_config(args.config)
else:
args.pool_dim = args.low_dim
args._device = "cuda:0" if torch.cuda.is_available() else "cpu"
cfg.update_config(args)
# deterministic behaviour
torch.manual_seed(cfg.seed)
torch.cuda.manual_seed(cfg.seed)
torch.backends.cudnn.benchmark = True
np.random.seed(cfg.seed)
# ----------------------
# Prepare dataset
# ----------------------
train_set = MetricLearningDataset('data', train=True, dataset_name=cfg.dataset, transform=transform_train)
train_loader = DataLoader(train_set, batch_size=cfg.batch_size, shuffle=True, num_workers=4, drop_last=True)
test_set = MetricLearningDataset('data', train=False, dataset_name=cfg.dataset, transform=transform_test)
test_loader = DataLoader(test_set, batch_size=cfg.test_batch, shuffle=False, num_workers=4)
# ----------------
# Model and Loss
# ----------------
# define model
model = build_dual_model('default', True, cfg.low_dim, cfg.n_cluster)
model.to(cfg.device)
# define optimizer
optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=cfg.lr)
# define logger
handler = logging.StreamHandler(sys.stdout)
log_dir = os.path.join(cfg.save_dir, 'logs')
if not os.path.exists(log_dir):
os.mkdir(log_dir)
logger = get_logger('train', os.path.join(log_dir, 'info.log'))
logger.addHandler(handler)
logger.info(cfg)
# Training
start_epoch = 1
best_recall = 0
train_time_total = 0.0
for epoch in range(start_epoch, cfg.n_epoch + 1):
# if epoch > 1:
# cfg.rim = 0
train_time_start = time.time()
rim_loss_mnt = AverageMeter()
ml_loss_mnt = AverageMeter()
recon_loss_mnt = AverageMeter()
if cfg.dataset == 'cub200':
nn_index = get_nearest_idex(model, train_set)
train_set.nnIndex = nn_index
model.train()
for batch_idx, (inputs1, inputs2, targets) in enumerate(train_loader):
inputs1, inputs2, targets = inputs1.to(cfg.device), inputs2.to(cfg.device), targets.to(cfg.device)
targets = targets.repeat(2)
inputs = torch.cat((inputs1, inputs2), 0)
optimizer.zero_grad()
repr, cluster, emb = model(inputs)
# Total loss
metric_loss = 0
recon_loss = 0
rim_loss = 0
# Compute RIM loss
if cfg.rim:
rim_loss = rim_criterion(cluster)
rim_loss_mnt.update(rim_loss.item(), inputs.size(0))
# loss += cfg.rim * rim_loss
if cfg.ml or cfg.recon:
pred_cluster = torch.argmax(torch.softmax(cluster, dim=1), dim=1)
pred_cluster = pred_cluster[:cfg.batch_size]
pred_cluster = pred_cluster.repeat(2)
# Uncomment the below line for training with supervised cluster
# pred_cluster = targets
unique_cluster = torch.unique(pred_cluster)
centroid_embedding = torch.zeros(len(unique_cluster), 1024, 7, 7).to(cfg.device)
index = pred_cluster == unique_cluster.view(-1, 1)
for i in range(len(index)):
centroid_embedding[i] = torch.mean(emb[index[i]], dim=0)
if cfg.ml:
x = model.flatten(centroid_embedding.detach().to(cfg.device))
model.feat_ext.eval()
x = model.feat_ext(x)
centroid_repr = model.l2norm(x)
model.feat_ext.train()
metric_loss = center_batch_criterion(repr, centroid_repr, pred_cluster)
ml_loss_mnt.update(metric_loss.item(), inputs.size(0))
# loss += cfg.ml * metric_loss
if cfg.recon:
emb_index = torch.argmax(unique_cluster == pred_cluster.view(-1, 1), dim=1)
centroid_latent = centroid_embedding[emb_index]
recon = model.decoder(centroid_latent)
recon_loss = recon_criterion(recon, inputs / 255.)
recon_loss_mnt.update(recon_loss.item(), inputs.size(0))
# loss += cfg.recon * recon_loss
loss = cfg.ml * metric_loss + cfg.recon * recon_loss + cfg.rim * rim_loss
# Compute norm loss
loss.backward()
optimizer.step()
if batch_idx % 20 == 0:
print('Epoch: [{}][{}/{}]\t'.format(epoch, batch_idx, len(train_loader)), end='')
print('Metric loss: {metric.val:4f} ({metric.avg:4f})\t'
'Rim loss: {rim.val:.4f} ({rim.avg:.4f})\t'
'Recon loss: {recon.val:.4f} ({recon.avg:.4f})'.format(metric=ml_loss_mnt, rim=rim_loss_mnt, recon=recon_loss_mnt))
# print('lr {}'.format(optimizer.param_groups[0]['lr']))
train_time_end = time.time()
train_time_epoch = train_time_end - train_time_start
logger.info('Training time: {:.6f}'.format(train_time_epoch))
train_time_total += train_time_epoch
# Evaluate
print('Learning rate at epoch {} is {}'.format(epoch, optimizer.param_groups[0]['lr']))
print('Extracting features...')
test_features, test_targets = extract_features(model, test_set)
train_recall = 0
test_recall = eval_recall_numpy(test_features, test_targets)
if cfg.dataset == 'ebay':
nmi = 0.0
else:
nmi = eval_nmi(test_features, test_targets)
if test_recall > best_recall:
best_recall = test_recall
# save checkpoint
state = {
'model': model.state_dict(),
'epoch': epoch,
'optimizer': optimizer.state_dict(),
}
checkpoint_file = "model_best.{}.pth".format(epoch)
torch.save(state, os.path.join(cfg.save_dir, checkpoint_file))
logger.info('Epoch {}'.format(epoch))
logger.info('Train Recall: {:.6f}, Test Recall: {:.6f}, NMI: {:.6f}'.format(train_recall, test_recall, nmi))
logger.info('Best Recall: {:.6f}'.format(best_recall))
logger.info('Training time total: {:.6f}'.format(train_time_total))