-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.py
151 lines (126 loc) · 5.05 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# I have to import this first or I get weird library errors.
import healpy as hp
import numpy as np
import pickle
import sys
import torch
from aquamam import AQuaMaM, get_labels
from configs import configs
from datasets import load_dataloaders
from ipdf import IPDF
from scipy.spatial.transform import Rotation
from train import get_R_grid
def get_toy_dicts(dataset, device, model):
cat2labels_idxs = {}
cat2rot_counts = {}
cat2Rs = {}
for (cat, quats) in dataset.cat2rots.items():
cat2Rs[cat] = Rotation.from_quat(quats).as_matrix()
labels = (
get_labels(torch.Tensor(quats).to(device), model.bins)[:, :3].cpu().numpy()
)
labels = labels[np.lexsort(np.rot90(labels))]
labels_idxs = {}
rot_counts = {}
for row in labels:
labels_idx = len(labels_idxs)
labels_idxs[tuple(row)] = labels_idx
rot_counts[labels_idx] = 0
cat2labels_idxs[cat] = labels_idxs
cat2rot_counts[cat] = rot_counts
return (cat2Rs, cat2labels_idxs, cat2rot_counts)
def sample_aquamam_toy():
(cat2Rs, cat2labels_idxs, cat2rot_counts) = get_toy_dicts(
test_loader.dataset, device, model
)
cat2incorrect_labels = {cat: {} for cat in cat2Rs}
cat2best_R_dists = {}
with torch.no_grad():
for (imgs, _) in test_loader:
(tokens, vals) = model.sample(imgs.to(device))
quats = vals.cpu().numpy()
Rs = Rotation.from_quat(quats).as_matrix()
for (cat, cat_Rs) in cat2Rs.items():
pred_cat_Rs = Rs[imgs == cat]
R_diffs = np.einsum(
"bij,cjk->bcik", pred_cat_Rs, cat_Rs.transpose(0, 2, 1)
)
traces = np.trace(R_diffs, axis1=2, axis2=3)
best_R_dists = np.arccos((traces - 1) / 2).min(axis=1)
cat2best_R_dists.setdefault(cat, []).append(best_R_dists)
imgs = imgs.cpu().numpy()
tokens = tokens.cpu().numpy()
for (idx, cat) in enumerate(imgs):
labels = tuple(tokens[idx])
try:
labels_idx = cat2labels_idxs[cat][labels]
cat2rot_counts[cat][labels_idx] += 1
except KeyError:
cat2incorrect_labels[cat][labels] = (
cat2incorrect_labels[cat].get(labels, 0) + 1
)
for (cat, best_R_dists) in cat2best_R_dists.items():
cat2best_R_dists[cat] = np.concatenate(best_R_dists)
dicts = {
"cat2labels_idxs": cat2labels_idxs,
"cat2incorrect_labels": cat2incorrect_labels,
"cat2best_R_dists": cat2best_R_dists,
"cat2rot_counts": cat2rot_counts,
}
pickle.dump(dicts, open(f"{which_model}_{which_dataset}.pydict", "wb"))
def sample_ipdf_toy():
cat2Rs = test_loader.dataset.cat2rots
cat2best_R_dists = {}
R_grid = get_R_grid(config["number_queries"]).reshape(1, -1, 9).to(device)
cat2rot_counts = {cat: {} for cat in cat2Rs}
with torch.no_grad():
for (imgs, _) in test_loader:
pred_cat_R = model.sample(imgs.to(device), R_grid)[0].reshape(3, 3)
cat = imgs[0].item()
cat_Rs = cat2Rs[cat]
pred_cat_R = pred_cat_R.cpu().numpy()
str_R = str(pred_cat_R)
cat2rot_counts[cat][str_R] = cat2rot_counts[cat].get(str_R, 0) + 1
R_diffs = pred_cat_R @ cat_Rs.transpose(0, 2, 1)
traces = np.trace(R_diffs, axis1=1, axis2=2)
best_R_dist = np.arccos((traces - 1) / 2).min()
cat2best_R_dists.setdefault(cat, []).append(best_R_dist)
for (cat, best_R_dists) in cat2best_R_dists.items():
cat2best_R_dists[cat] = np.array(best_R_dists)
dicts = {"cat2best_R_dists": cat2best_R_dists, "cat2rot_counts": cat2rot_counts}
pickle.dump(dicts, open(f"{which_model}_{which_dataset}.pydict", "wb"))
if __name__ == "__main__":
which_model = sys.argv[1]
which_dataset = sys.argv[2]
config = configs[which_model][which_dataset]
params_f = f"{which_model}_{which_dataset}.pth"
device = "cuda:0"
model_details = {"model": which_model.split("_")[0]}
if which_model == "aquamam":
model = AQuaMaM(**config["model_args"]).to(device)
else:
model = IPDF(**config["model_args"]).to(device)
model_details["neg_samples"] = 1
if which_dataset == "toy":
model_details["max_pow"] = config["model_args"]["toy_args"]["max_pow"]
model.load_state_dict(torch.load(params_f))
model.eval()
if which_dataset == "toy":
(test_loader, _, _) = load_dataloaders(
which_dataset,
model_details,
config["test_batch_size"],
config["num_workers"],
)
else:
(_, _, test_loader) = load_dataloaders(
which_dataset,
model_details,
config["test_batch_size"],
config["num_workers"],
)
if which_dataset == "toy":
if which_model == "aquamam":
sample_aquamam_toy()
else:
sample_ipdf_toy()