forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcore_overhead_benchmark_gpu.cc
222 lines (198 loc) · 6.29 KB
/
core_overhead_benchmark_gpu.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "benchmark/benchmark.h"
#include "caffe2/core/context.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/operator.h"
#define CAFFE2_SKIP_IF_NO_GPU \
if (!caffe2::NumCudaDevices()) { \
state.SkipWithError("No CUDA available, skipping benchmark."); \
return; \
}
using namespace caffe2;
static void BM_CUDAContextCreation(benchmark::State& state) {
CAFFE2_SKIP_IF_NO_GPU;
volatile CUDAContext context_so_we_do_initialization_work;
while (state.KeepRunning()) {
volatile CUDAContext context;
}
}
BENCHMARK(BM_CUDAContextCreation);
static void BM_CUDAContextStreamAccess(benchmark::State& state) {
CAFFE2_SKIP_IF_NO_GPU;
CUDAContext context;
while (state.KeepRunning()) {
volatile cudaStream_t stream = context.cuda_stream();
}
}
BENCHMARK(BM_CUDAContextStreamAccess);
static void BM_cudaGetDevice(benchmark::State& state) {
CAFFE2_SKIP_IF_NO_GPU;
int id;
while (state.KeepRunning()) {
CUDA_ENFORCE(cudaGetDevice(&id));
}
}
BENCHMARK(BM_cudaGetDevice);
static void BM_cudaSetDevice(benchmark::State& state) {
CAFFE2_SKIP_IF_NO_GPU;
int total = NumCudaDevices();
int i = 0;
while (state.KeepRunning()) {
CUDA_ENFORCE(cudaSetDevice((i++) % total));
}
}
BENCHMARK(BM_cudaSetDevice);
static void BM_cudaSetAndGetDevice(benchmark::State& state) {
CAFFE2_SKIP_IF_NO_GPU;
int total = NumCudaDevices();
int i = 0;
int id;
while (state.KeepRunning()) {
CUDA_ENFORCE(cudaSetDevice((i++) % total));
CUDA_ENFORCE(cudaGetDevice(&id));
}
}
BENCHMARK(BM_cudaSetAndGetDevice);
static void BM_cudaSetSameDevice(benchmark::State& state) {
CAFFE2_SKIP_IF_NO_GPU;
while (state.KeepRunning()) {
CUDA_ENFORCE(cudaSetDevice(0));
}
}
BENCHMARK(BM_cudaSetSameDevice);
static void BM_cudaStreamCreateSyncDelete(benchmark::State& state) {
CAFFE2_SKIP_IF_NO_GPU;
cudaStream_t stream;
while (state.KeepRunning()) {
CUDA_ENFORCE(cudaStreamCreate(&stream));
CUDA_ENFORCE(cudaStreamSynchronize(stream));
CUDA_ENFORCE(cudaStreamDestroy(stream));
}
}
BENCHMARK(BM_cudaStreamCreateSyncDelete);
static void BM_cudaStreamSynchronize(benchmark::State& state) {
CAFFE2_SKIP_IF_NO_GPU;
cudaStream_t stream;
CUDA_ENFORCE(cudaStreamCreate(&stream));
while (state.KeepRunning()) {
CUDA_ENFORCE(cudaStreamSynchronize(stream));
}
}
BENCHMARK(BM_cudaStreamSynchronize);
static void BM_cudaEventRecord(benchmark::State& state) {
CAFFE2_SKIP_IF_NO_GPU;
cudaStream_t stream;
cudaEvent_t event;
CUDA_ENFORCE(cudaStreamCreate(&stream));
CUDA_ENFORCE(cudaEventCreateWithFlags(
&event, cudaEventDefault | cudaEventDisableTiming));
while (state.KeepRunning()) {
CUDA_ENFORCE(cudaEventRecord(event, stream));
}
}
BENCHMARK(BM_cudaEventRecord);
static void BM_cudaStreamWaitEventThenStreamSynchronize(
benchmark::State& state) {
CAFFE2_SKIP_IF_NO_GPU;
cudaStream_t stream;
cudaEvent_t event;
CUDA_ENFORCE(cudaStreamCreate(&stream));
CUDA_ENFORCE(cudaEventCreateWithFlags(
&event, cudaEventDefault | cudaEventDisableTiming));
CUDA_ENFORCE(cudaEventRecord(event, stream));
CUDA_ENFORCE(cudaStreamWaitEvent(stream, event, 0));
CUDA_ENFORCE(cudaStreamSynchronize(stream));
while (state.KeepRunning()) {
CUDA_ENFORCE(cudaStreamWaitEvent(stream, event, 0));
CUDA_ENFORCE(cudaStreamSynchronize(stream));
}
}
BENCHMARK(BM_cudaStreamWaitEventThenStreamSynchronize);
static void BM_CudaPointerAffinity(benchmark::State& state) {
CAFFE2_SKIP_IF_NO_GPU;
Tensor tensor(vector<int64_t>{1, 2, 3, 4}, CUDA);
float* ptr = tensor.mutable_data<float>();
while (state.KeepRunning()) {
volatile int id = GetGPUIDForPointer(ptr);
}
}
BENCHMARK(BM_CudaPointerAffinity);
namespace {
template <class Context>
class DummyEmptyOp : public Operator<Context> {
public:
DummyEmptyOp(const OperatorDef& def, Workspace* ws)
: Operator<Context>(def, ws) {}
bool RunOnDevice() final { return true; }
};
REGISTER_CPU_OPERATOR(DummyEmpty, DummyEmptyOp<CPUContext>);
REGISTER_CUDA_OPERATOR(DummyEmpty, DummyEmptyOp<CUDAContext>);
OPERATOR_SCHEMA(DummyEmpty);
} // namespace
static void BM_OperatorCreationCPU(benchmark::State& state) {
std::unique_ptr<OperatorBase> op;
OperatorDef def;
Workspace ws;
def.set_type("DummyEmpty");
def.mutable_device_option()->set_device_type(PROTO_CPU);
while (state.KeepRunning()) {
op = CreateOperator(def, &ws);
}
}
BENCHMARK(BM_OperatorCreationCPU);
static void BM_OperatorCreationCUDA(benchmark::State& state) {
CAFFE2_SKIP_IF_NO_GPU;
std::unique_ptr<OperatorBase> op;
OperatorDef def;
Workspace ws;
def.set_type("DummyEmpty");
def.mutable_device_option()->set_device_type(PROTO_CUDA);
while (state.KeepRunning()) {
op = CreateOperator(def, &ws);
}
}
BENCHMARK(BM_OperatorCreationCUDA);
static void BM_RawAllocDeallocCPU(benchmark::State& state) {
while (state.KeepRunning()) {
// Allocating only 1 byte in order to measure the overhead.
auto data_ptr = GetCPUAllocator()->allocate(1);
// Deallocated when it's out of scope
}
}
BENCHMARK(BM_RawAllocDeallocCPU);
static void BM_TensorAllocDeallocCPU(benchmark::State& state) {
Tensor tensor(CPU);
// small allocation
tensor.Resize(32, 32);
while (state.KeepRunning()) {
CHECK(tensor.mutable_data<float>());
tensor.FreeMemory();
}
}
BENCHMARK(BM_TensorAllocDeallocCPU);
static void BM_TensorAllocDeallocCUDA(benchmark::State& state) {
CAFFE2_SKIP_IF_NO_GPU;
Tensor tensor(CUDA);
// small allocation
tensor.Resize(32, 32);
while (state.KeepRunning()) {
CHECK(tensor.mutable_data<float>());
tensor.FreeMemory();
}
}
BENCHMARK(BM_TensorAllocDeallocCUDA);
BENCHMARK_MAIN();