-
Notifications
You must be signed in to change notification settings - Fork 0
/
openpiv_2A_NoParticles_50mm.py
201 lines (153 loc) · 6.48 KB
/
openpiv_2A_NoParticles_50mm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.6.0
# kernelspec:
# display_name: Python [conda env:drainage] *
# language: python
# name: conda-env-drainage-py
# ---
# %%
import openpiv
# %%
from openpiv import windef
from openpiv import tools, process, scaling, validation, filters, preprocess
import numpy as np
import os
# from time import time
import warnings
import matplotlib.pyplot as plt
# %matplotlib inline
import pathlib
# %%
image_path = pathlib.Path(r'./2A_RectificatedFrames_NoParticles_50mmh')
res_path = pathlib.Path(r'./Results/Open_PIV_results_64_NoParticles_50mmh/')
# %%
file_list = []
for path in sorted(image_path.rglob('*.tif')):
# print(f'{path.name}')
file_list.append(path.name)
# %%
file_list
# %%
settings = windef.Settings()
'Data related settings'
# Folder with the images to process
settings.filepath_images = image_path
# Folder for the outputs
settings.save_path = './Results/'
# Root name of the output Folder for Result Files
settings.save_folder_suffix = 'NoParticles_50mmh'
# Format and Image Sequence
settings.frame_pattern_a = '*.tif' # file_list[0]
# settings.frame_pattern_b = file_list[1]
settings.frame_pattern_b = None
# If you want only one pair
# settings.frame_pattern_a = file_list[0]
# settings.frame_pattern_b = file_list[1]
'Region of interest'
# (50,300,50,300) #Region of interest: (xmin,xmax,ymin,ymax) or 'full' for full image
settings.ROI = 'full' # (0,300,0,1024) #'full'
'Image preprocessing'
# 'None' for no masking, 'edges' for edges masking, 'intensity' for intensity masking
# WARNING: This part is under development so better not to use MASKS
settings.dynamic_masking_method = 'None'
settings.dynamic_masking_threshold = 0.005
settings.dynamic_masking_filter_size = 7
'Processing Parameters'
settings.correlation_method='circular' # 'circular' or 'linear'
settings.iterations = 1 # select the number of PIV passes
# add the interroagtion window size for each pass.
# For the moment, it should be a power of 2
settings.windowsizes = (64,32,16) # if longer than n iteration the rest is ignored
# The overlap of the interroagtion window for each pass.
settings.overlap = (32,16,8) # This is 50% overlap
# Has to be a value with base two. In general window size/2 is a good choice.
# methode used for subpixel interpolation: 'gaussian','centroid','parabolic'
settings.subpixel_method = 'gaussian'
# order of the image interpolation for the window deformation
settings.interpolation_order = 3
settings.scaling_factor = 1 # scaling factor pixel/meter
settings.dt = 1 # time between to frames (in seconds)
# 'Signal to noise ratio options (only for the last pass)'
# It is possible to decide if the S/N should be computed (for the last pass) or not
settings.extract_sig2noise = False # 'True' or 'False' (only for the last pass)
# method used to calculate the signal to noise ratio 'peak2peak' or 'peak2mean'
settings.sig2noise_method = 'peak2peak'
# select the width of the masked to masked out pixels next to the main peak
settings.sig2noise_mask = 1.2
# If extract_sig2noise==False the values in the signal to noise ratio
# output column are set to NaN
'vector validation options'
# choose if you want to do validation of the first pass: True or False
settings.validation_first_pass = True
# only effecting the first pass of the interrogation the following passes
# in the multipass will be validated
'Validation Parameters'
# The validation is done at each iteration based on three filters.
# The first filter is based on the min/max ranges. Observe that these values are defined in
# terms of minimum and maximum displacement in pixel/frames.
settings.MinMax_U_disp = (-50, 50)
settings.MinMax_V_disp = (-50, 50)
# The second filter is based on the global STD threshold
settings.std_threshold = 3 # threshold of the std validation
# The third filter is the median test (not normalized at the moment)
settings.median_threshold = 3 # threshold of the median validation
# On the last iteration, an additional validation can be done based on the S/N.
settings.median_size=1 #defines the size of the local median
'Validation based on the signal to noise ratio'
# Note: only available when extract_sig2noise==True and only for the last
# pass of the interrogation
# Enable the signal to noise ratio validation. Options: True or False
settings.do_sig2noise_validation = True # This is time consuming
# minmum signal to noise ratio that is need for a valid vector
settings.sig2noise_threshold = 2
'Outlier replacement or Smoothing options'
# Replacment options for vectors which are masked as invalid by the validation
settings.replace_vectors = True # Enable the replacment. Chosse: True or False
settings.smoothn=True #Enables smoothing of the displacemenet field
settings.smoothn_p = 0.5 # This is a smoothing parameter
# select a method to replace the outliers: 'localmean', 'disk', 'distance'
settings.filter_method = 'localmean'
# maximum iterations performed to replace the outliers
settings.max_filter_iteration = 4
settings.filter_kernel_size = 3 # kernel size for the localmean method
'Output options'
# Select if you want to save the plotted vectorfield: True or False
settings.save_plot = False
# Choose wether you want to see the vectorfield or not :True or False
settings.show_plot = False
settings.scale_plot = 50 # select a value to scale the quiver plot of the vectorfield
# run the script with the given settings
# %%
windef.piv(settings);
# %%
res_list = []
for path in sorted(res_path.rglob('*.txt')):
# print(f'{path.name}')
res_list.append(res_path / path.name)
# %%
for i,f in enumerate(res_list):
fig,ax = plt.subplots(figsize=(12,12))
tools.display_vector_field(f, on_img=True,
image_name = image_path / file_list[i],
scaling_factor=1,
scale=30, width=0.002,ax=ax,widim=True)
fig.savefig(f'{str(f)[:-4]}.png',dpi=150)
# settings.frame_pattern_a = f1
# settings.frame_pattern_b = f2
# windef.piv(settings);
# for f1,f2 in zip(file_list[0:-1:2],file_list[1::2]):
# settings.frame_pattern_a = f1
# settings.frame_pattern_b = f2
# windef.piv(settings);
# fig,ax = plt.subplots(figsize=(12,6))
# tools.display_vector_field(res_path/filename,on_img=True,
# image_name = image_path / f1,
# scaling_factor=1,
# scale=300, width=0.0025,ax=ax)
# %%